PROJET AUTOBLOG


Boudah Talenka

Site original : Boudah Talenka

⇐ retour index

La théorie de la relativité resteinte et générale

jeudi 6 octobre 2016 à 00:00

Ce petit livre a pour but de faire connaître, d’une manière aussi exacte que possible, la Théorie de la relativité à ceux qui s’intéressent à elle au point de vue général, scientifique et philosophique, mais qui ne possèdent pas l’appareil mathématique de la Physique théorique [1]. La lecture suppose à peu près des connaissances de bachelier et - malgré le peu d’étendue du livre - une bonne dose de patience et de force de volonté. L’auteur n’a pas ménagé sa peine pour présenter les idées fondamentales d’une manière aussi claire et simple que possible et, en gros, dans l’ordre et la connexion dans lesquels elles ont réellement pris naissance. Dans l’intérêt de la clarté, il m’a paru inévitable de me répéter souvent, sans me soucier le moins du monde de donner à mon exposé une forme élégante ; j’ai consciencieusement suivi l’avis du théoricien génial L. Boltzmann, de laisser le souci d’élégance aux tailleurs et aux cordonniers. Je ne crois pas avoir caché au lecteur les difficultés inhérentes au sujet. J’ai, par contre, traité à dessein d’une façon sommaire les fondements empiriques et physiques de la théorie, afin que le lecteur qui n’est pas bien familiarisé avec la physique ne se trouve dans une situation semblable à celle du voyageur que les maisons empêchaient de voir la ville.

Puisse ce petit livre être un stimulant pour beaucoup de lecteurs et leur faire passer quelques heures agréables.

PREMIERE PARTIE : La théorie de la relativité restreinte

Le contenu physique des propositions géométriques

Sans doute avez-vous, cher lecteur, quand vous étiez jeune garçon, fait la connaissance du superbe édifice de la Géométrie d’Euclide, et vous vous rappelez peut-être, avec plus de respect que de plaisir, cette imposante construction sur le haut escalier de laquelle des maîtres consciencieux vous forçaient de monter pendant des heures innombrables. En vertu de ce passé vous traiteriez avec dédain toute personne qui regarderait même la moindre proposition de cette science comme inexacte. Mais ce sentiment de fière certitude vous abandonnerait peut-être, si l’on vous posait cette question « Qu’entendez-vous par l’affirmation que ces propositions sont vraies ? » À cette question nous voulons nous arrêter un peu.

La géométrie part de certaines notions fondamentales telles que le point, la droite, le plan, auxquelles nous sommes capables d’associer des représentations plus ou moins claires, et de certaines propositions simples (axiomes), que nous sommes disposés à regarder, en vertu de ces représentations, comme «vraies». Toutes les autres propositions sont ensuite ramenées, au moyen d’une méthode logique dont nous nous sentons forcés de reconnaître la légitimité, aux axiomes, c’est-à-dire démontrées. Une proposition est, par conséquent, exacte ou «vraie», si elle est déduite des axiomes de la manière généralement admise. La question de savoir si telle ou telle proposition géométrique est « vraie » se ramène, par conséquent, à la question de savoir si les axiomes sont « vrais ». Mais on sait depuis longtemps que non seulement on ne peut répondre à cette dernière question au moyen des méthodes de la géométrie, mais qu’elle n’a en elle-même aucun sens. On ne peut pas demander s’il est vrai que par deux points il ne passe qu’une seule droite. On peut seulement dire que la Géométrie euclidienne traite de figures qu’elle appelle « droites » et auxquelles elle attribue la propriété d’être déterminées d’une manière univoque par deux de ses points. La notion de «vrai» ne s’applique pas aux énoncés de la géométrie pure, car par le terme «vrai» nous désignons, en dernier ressort, toujours la concordance avec un objet «réel». Or, la Géométrie ne s’occupe pas du rapport entre ses notions et les objets de l’expérience, mais seulement du rapport logique de ces notions entre elles.

Que nous nous sentions quand même portés à regarder les propositions de la Géométrie comme «vraies », cela est facile à expliquer. Aux notions géométriques correspondent plus ou moins exactement des objets déterminés dans la nature, qui sont indubitablement la seule cause de leur naissance. Libre à la Géométrie, pour donner à sa construction la plus grande cohésion logique possible, de ne pas en tenir compte. L’habitude, par exemple, de nous représenter une droite par deux points marqués sur un corps pratiquement rigide est profondément enracinée dans notre esprit. Nous sommes, en outre, habitués à supposer que trois points se trouvent sur une droite si, par un choix approprié du point de vision, nous pouvons faire coïncider leurs positions apparentes.

Si maintenant, en suivant nos habitudes de penser, nous ajoutons aux propositions de la Géométrie euclidienne la seule proposition qui affirme qu’à deux points d’un corps pratiquement rigide correspond toujours la même distance (droite), quels que soient les changements de position que nous lui fassions subir, les propositions de la Géométrie euclidienne deviennent des propositions sur la position relative possible de corps pratiquement rigides [2]. La Géométrie ainsi complétée doit être traitée comme une branche de la Physique. Et c’est avec raison que la question de la « vérité » des propositions géométriques ainsi interprétées peut maintenant être posée, car on peut se demander si ces propositions sont aussi valables pour les objets réels que nous avons coordonnés aux notions géométriques. D’une façon quelque peu imprécise nous pouvons, par conséquent, dire que nous entendons par la « vérité » d’une proposition géométrique en ce sens sa validité dans une construction avec le compas et la règle.

La conviction de la « vérité » des propositions géométriques en ce sens repose naturellement sur des expériences assez imparfaites. Nous voulons pour le moment admettre la vérité de ces propositions ; nous verrons ensuite, dans la dernière partie de nos réflexions (quand nous traiterons de la Théorie de la relativité générale), qu’elle est limitée et dans quelle mesure elle l’est.

Le système de coordonnées

En vertu de l’interprétation physique de la distance, dont on vient de parler, nous sommes aussi en état de déterminer la distance de deux points sur un corps rigide au moyen de mesures. A cet effet nous avons besoin d’une droite (bâtonnet S), qui nous servira d’unité de mesure. Si maintenant A et B sont deux points d’un corps rigide, la droite qui les relie peut être construite d’après les lois de la Géométrie; on peut ensuite appliquer sur cette droite la droite S à partir de A autant de fois qu’il est nécessaire pour atteindre B. Le nombre des applications successives est la mesure de la droite AB. C’est sur ce procédé que repose toute mesure de longueur [3].

Toute description d’un lieu où se produit un événement, ou bien où se trouve un objet, consiste en ceci qu’on indique le point d’un corps rigide (corps de référence) avec lequel cet événement coïncide. Ce procédé n’est pas seulement employé dans la description scientifique, mais aussi dans la vie journalière. En analysant l’indication de lieu « à Paris, place du Panthéon », on trouve que sa signification est la suivante : Le sol est le corps rigide auquel se rapporte l’indication du lieu. Sur ce sol, « la place du Panthéon à Paris » est marquée par un point accompagné d’un nom avec lequel l’événement coïncide dans l’espace [4].

Ce procédé primitif d’indiquer les lieux peut être employé seulement pour les lieux à la surface des corps rigides et dépend de l’existence de points discernables sur cette surface. Voyons comment l’esprit humain s’affranchit de ces deux restrictions, sans que l’essentiel de l’indication des lieux subisse une modification. Si, par exemple, un nuage plane au-dessus de la place du Panthéon, le lieu de ce nuage, rapporté à la surface de la Terre, peut être déterminé en dressant verticalement sur cette place une perche qui atteint le nuage. La longueur de la perche, mesurée avec la règle, jointe à l’indication du lieu du pied de la perche fournit alors une indi cation parfaite du lieu. Cet exemple nous montre de quelle façon le perfectionnement de la notion de lieu s’est opéré.

  1. On trouvera les fondements mathématiques de la Théorie de la relativité restreinte dans les Mémoires originaux de , et , publiés sous le titre Das Relativitätsprinzip dans la collection de monographies Fortschritte der mathematischen Wissenschaften (Teubner), ainsi que dans le livre détaillé de intitulé Das Relativitätsprinzip (Vieweg, Brunswick, ). La Théorie de la relativité générale ainsi que les auxiliaires de la théorie des invariants s’y rapportant sont exposés dans le Mémoire de l’auteur intitulé Die Grundlagen der allgemeinen Relativitätstheorie (Barth, 1916); ce Mémoire suppose une connaissance assez approfondie de la Théorie de la relativité restreinte.
  2. Par là on coordonne aussi à la ligne droite un objet naturel. Trois points A, B, C d’un corps rigide sont alors situés sur une droite si, A et C étant donnés, le point B est choisi de telle sorte que la somme des distances AB et BC est aussi petite que possible. Cette indication incomplète est ici suffisante.
  3. Il est ici supposé que la mesure est faite sans laisser de reste, c’est- à-dire que le résultat est un nombre entier. On s’affranchit de cette difficulté en employant des règles graduées, dont l’introduction n’exige en principe aucune méthode nouvelle.
  4. Une recherche plus détaillée pour montrer ce que signifie ici «coïncidence dans l’espace» n’est pas nécessaire ; car cette notion est claire en ce sens que, dans le cas concret particulier, des divergences d’opinion au sujet de sa validité ou non validité peuvent à peine se manifester.

Publié par