
Details of Technical Progress SP41-RR0078513

mail, network designs, and protocols and had kept system tables for network host names
and addresses, both local and over the ARPANET, up-to-date.
Because of the heavy loads we have been experiencing on the 2060, we made a detailed
performance study of the system dynamics and usage patterns. Among the observations
of this study was that the usage of the 2060 was fairly evenly spread between research
work (Lisp program development) and text-processing, communications (electronic mail,
bulletin boards, etc.), Executive utilities, and system servers (printing, networks, etc.).
The research usage has been much higher in the past but has already migrated
significantly to personal workstations, while these other applications have not because
comparable tools do not exist yet. In this study, we did not find any significant areas
of inefficiency in the system -- simply that our user load is very high for the machine
resources available.

UNIX Development and Support

We run UNIX on our shared VAX 11/780 and on our 11/750 file servers. This system
has been used pretty much as distributed by the University of California at Berkeley,
except ‘for local network support modifications, such as for ChaosNet protocols. The
local VAX user community is small, so we have not expended much system effort
beyond staying current with operating system releases and with useful UNIX community
developments.

Workstation System Development and Suppoit

Lisp workstations represent the major new direction for system development at
SUMEX-AIM because these machines offer high performance Lisp engines, large
address spaces required for sophisticated AI systems, flexible graphics interfaces for
users, state-of-the-art program development and debugging tools, and a modularity that
promises to be the vehicle for disseminating Al systems into user environments.
Accordingly, we have invested a large part of our system effort in developing selected
workstations and the related networking environments for effective use in the SUMEX-
AIM community. In the transition to workstations as computing environments suitable
for AI applications work, not just as programming environments, much system
development remains to be done, as illustrated below.

Filing

In general, each vendor has addressed the file storage needs of their particular
workstation in a way that is incompatible with most other workstations, making support
difficult in a highly heterogeneous environment such as the SUMEX-AIM community.
The resources necessary to maintain many distinct families of. filing conventions and
protocols on specialized hardware, all meeting the performance needs of a demanding
research community, is prohibitive. Thus we have decided to attempt a compromise.
There is active systems research on distributed file service issues and the results are not
clear enough yet to guide long range design decisions. So, we have tentatively decided
to adopt a variant of the NFILE file access protocol developed by Symbolics, Inc. A
file access protocol is intermediate between a remote file system and a fife transfer
protocol. A remote file system imposes many constraints upon a potential server
machine by specifying features of the file system such as pathname syntax, data block
size, character set, protection mechanisms, etc. This makes such protocols very difficult
to implement on arbitrary machines as many of these attributes are integrated into
operating systems at quite a low level. Conversely, file transfer protocols are specified
to allow copying an entire file from one machine to another -- a very primitive form
of access to the files. A file access protocol can be designed to exist with many

E. H. Shortliffe 26

5P41-RR00785-13 Details of Technical Progress

different operating systems, each with its owu idiosyncrasies in its file system, but still
allowing remote users flexible access to the data stored in the file systems by providing
features such as random access, well defined file directory listing, file propert)
manipulation facilities, and asynchronous error recovery.

We decided on NFILE for the following reasons:

. Most significantly, NFILE is built upon abstract interfaces to network
streams and host operating systems. It can be easily built upon any reliable
byte stream protocol, allowing us to use the resul-ts of on-going network

-development without reimplementing filing protocols. It also is careful not
to specify host-dependent information such as pathname syntax or storage
format, while providing mechanisms for manipulating file system entities
such as directories, files, links, and file attributes. Many file attributes, such
as BLOCK-SIZE and CREATION-DATE are included in the protocol, but
any can be added as needed, and none are required by the protocol itself,
lending flexibility that should make it easy to implement on a variety of
operating systems.

. NFILE is a public domain protocol. No licensing is needed to implement
or run it.

l An implementation already exists on the Symbolics machine, which can be
used for testing and debugging.

l We can implement it to run efficiently in the UNIX kernel, providing the
performance the research community nseds with inexpensive equipment.

l NFILE can be implemented fairly easily on all of the systems in use by the
SUMEX-AIM community since it need not draw on internal operating
system features, difficult modifications to existing software should not be
needed. Then, as alternative, potentially better techniques become known,
NFILE can be abandoned and replaced without having consumed significant
resources.

. Many of the options specified by NFILE are derived from the CommonLisp
specification and so provide for a significant part of our needs without
extension.

Electronic Mail

Electronic mail has become a primary means of communication for the widely spre:ld
SUMEX-AIM community. The advent of workstations is forcing a significant
rethinking of the mechanisms employed to manage such mail. With mainframes. each
user tends to receive and processes mail at the computer he uses most of the time, his
primary host. The first inclination of many users when an independent workstation is
placed in front of them is to begin receiving mail at the workstation, and, in fact,
many vendors have implemented facilities to do this. However, this approach has
several disadvantages:

l Workstations (especially Lisp workstations) have a software design that gives
full control of all aspects of the system to the user at the cotlsole. As a
result, background tasks, like receiving mail, could well be kept from
running for long periods of time either because the user is asking to all of
the machine’s resources, or because, in the course of working, the user has
(perhaps accidentally) manipulated the environment in such a way as to
prevent mail reception. This could lead to repeated failed delivery attempts
by outside agents.

27 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-13

. The hardware failure of a single workstation could keep its user “off the
air” for a considerable time since repair of individual workstation units
might delayed. Given the growing number of workstations spread
throughout office environments, quick repair would not be assured, whereas
a centralized mainframe is generally repaired very soon after failure.

. It is more difficult to keep track of mailing addresses when each person is
associated with a distinct machine. Consider the difficulty in keeping track
of postal addresses or phone numbers if each person you knew lived in a
different city. On the other hand, remembering a name and one of several
“hosts” is fairly simple, though not perfect.

. It is very difficult to keep a multitude of heterogeneous workstations
working properly with complex mailing protocols, making it difficult to
move forward as progress is made in electronic communication and as new
standards emerge. Each system has to worry about receiving incoming mail,
routing and delivering outgoing mail, formatting, storing, and providing for
the stability of mailboxes over a variety of possible filing and mailing
protocols.

Thus, we are investigating the alternative strategy of having a mail server machine
which handles mail transactions. Because this machine would be isolated from direct
user manipulation, it could achieve high software reliability easily, and, as a shared
resource, it could achieve high hardware reliability, perhaps through redundancy. The
mail server could be used from arbitrary locations, allowing users to be freed from
their console to read mail across campus, town, or country without need of expensive
machinery.

The mail server acts as an interface among users, data storage, and other mailers.
Users employ a mail access protocol to retrieve messages, access and change properties
of messages, manage mailboxes, and send mail. This protocol should be simple enough
to implement on relatively simple, inexpensive machines so that mail can be read
remotely easily. This is somewhat distinct from some previous approaches since the
mail access protocol is used for all message manipulations, isolating the user from all
knowledge of how the data storage is used. This means the the mail server can utilize
the data storage in whatever way is most efficient to organize the mail. The data
storage could be anything from conventional magnetic disk file system to a highly
specialized mail filing system built on optical disks, since it is abstracted from other
elements in the mail system. The other mailers constitute the mail server’s (and thus
the users’) link to the outside world. The mail server would use various mail transport
protocols (e.g., SMTP) to exchange mail with other mail hosts.

We have been investigating user mail interface issues for workstations, as well as issues
for the mail access protocol itself. We are examining several related projects, including
MIT’s PCMAIL, the public parts of Xerox’s Grapevine and NSMail, and work on
Stanford’s V system. We have implemented an interim mail access protocol and have
begun implementing user interfaces that make use of it on Xerox D-machines and
Texas Instruments Explorers.

Xerox D-Machines

Much of the SUMEX-AIM community uses InterLisp and has moved naturally to the
Xerox D-machines -- initially the Dolphin (llOO), then the Dandelion (1108),
Dandetiger (1109), and Dorado (1132), and now the DayBreak (1186). Much work has
gone into hardware installation and networking support but we have also developed
numerous software packages to help make the machines more effective for users and to
ease our own problems in managing the distributed workstation environment.

E. H. Shortliffe 28

5P41-RR00785-13 Details of Technical Progress

The number and utility of “lispusers packages” has again increased significantly over
the past year. Although too numerous to detail (there are approximately 550 packages
currently, up from about 240 last year), packages receiving heavy use for the first time
in the past year were Sketch, FileBrowser, TEdit, Manager, Impress, Hash, Helpsys, and
Spy. Many of these packages were beta-tested at SUMEX and/or patches and updates
were distributed via the Info-1100 and Bug-1100 discussion lists we maintain. Other
AIM Sites and research groups around the world were able to share in our progress and
benefit from our experience by participating in the discussion lists. We, in turn, as
subscribers to the same discussion lists were able to benefit from the experiences and
expertise of others.

The past year saw Interlisp’s device-independent graphics mechanism (“image streams”)
mature and grow a good deal. We participated in the design changes, ensuring that the
specification was sufficiently device-independent that our Impress laser printer protocol
package would be integrated into the system as easily and well as the Xerox-authored
Press protocol and In terpress protocol packages. An ImageStream driver was developed
to support, a Hewlett-Packard color plotter. The development of the driver helped to
explore the issues of color in the ImageStream specification as well as test how it
applied to analog devices. For the first time we were able to generate color hardcopy
output from the both the black & white Interlisp workstations and, with some
Additional conversion software, from the color Iris workstation.

The Impress package was extended to include almost all of the operators in the new
specification. The Impress package is sufficiently complete that HARDCOPYW,
DISPLAYGRAPH, TEdit, and Sketch all produce output of quality comparable to that
of the more-expensive Xerox laser printers. In most cases the output is generated faster
than for those printers and more compactly. We are presently participating in another
round of improvements to the specification.

In support of the expanding number of ImageStream drivers, a self-scaling graphics
command set was implemented on top of the standard graphics command set that
allowed software to be written without regard to the scaling requirements of a. particular
output device. This allowed graphics output to be easily redirected to varying printing
devices without modification of the source program and/or without adding additional
scaling routines to every program.

Implementation of an Interlisp-based Ethernet boot file server for the Xerox
workstations was completed this past year. This server made it possible to obtain
workstation installation and diagnostic utilities via the network as an alternative to
floppy disks. Much later, t.he Interlisp-based boot file server was replaced with a Xerox
product Ethernet boot server which extended our network installation and diagnostic
capabilities. The addition of network boot file service has led to improvements in
software installation procedures by allowing us to move away from our previous
dependence on floppy disks. This has become increasingly important as the newer
Xerox 1186 hardware supports a smaller capacity floppy disk’ drive and would require
use of over a dozen floppy disks if Ethernet installation were not available.

Initial exploration into distributed systems and remote workstation access was started.
An experimental XNS-based TELNET server was built to allow access in to a
workstation remotely via the Ethernet. This experimental server uncovered numerous
problems with the workstation software and initiated discussions that led to a complete
TELNET/GAP (Xerox XNS Gateway Access Protocol) server for the workstations
(pending the next Xerox software release). The workstation “executive” part of the
experimental TELNET server was extracted and generalized and put to use in the TCP-
based Ethernet virtual graphics work.

We developed a system called IMEDIT. This program allows users to break apart
Impress files and also to merge in other Impress files. Merging Impress files is an

29 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-13

important feature since SCRIBE cannot do .this. SCRIBE can merge in a picture but
any text in the picture will be printed in the wrong font. IMEDIT gets around this
problem by manipulating the fonts so that fonts in a merged file don’t conflict with
fonts in the base file. IMEDIT can also generate an ASCII file showing the Impress
commands and their arguments in an Impress file. This feature is invaluable for those
who need to understand the Impress language.

Currently we are working on the TEdit text editor, initially to facilitate simple
document types like memos. We have implemented an ImageObject that allows users to
select the logo they prefer and are working on others for document features like the
return address. Eventually users will be able to interactively choose what they want
from. standard menus. Such systems are essential to allow users to move work from the
2060 to workstations.

We have worked closely with many other sites, including the Center for Study of
Language and Information at Stanford, the Stanford Campus Networking group, Rutgers
University, Ohio State University, the University of Pittsburgh, Cornell, Maryland, and
industrial research groups such as Xerox Palo Alto Research Center, SRI, Teknowledge,
IntelliCorp, and Schlumberger-Doll Research. We have been the maintainers for the
international electronic mail network of users for research D-machines, which have
upwards of 300 readers, and the interchange of ideas and problems among this group
has been of great service to all users.

ZetaLisp Workstations

The complement of ZetaLisp-based workstations has grown to include twenty Texas
Instruments Explorers and ten Symbolics 3600-class machines. The acquisition of these
machines was driven by three primary factors. First, many of the research projects are
attempting to become independent of any particular machine, and so are moving
development to the CommonLisp standard language. These machines are among the
first to offer production quality support of CommonLisp. Second, some application
systems require substantial performance in terms of processing speed and address space
in order to complete in a reasonable amount of time. These machines were among the
highest performing Lisp machines available at the time. Finally, there are researchers
who prefer the MacLisp/Emacs derived programming environment.

The Explorer and the 3600 are both built on MIT’s ZetaLisp software, and so continue
to share much functionality. Therefore, many projects have been undertaken
simultaneously on both machines. In order to facilitate this interoperability, two
compatibility packages have been built, one for each type of machine. The packages
contain code to add functionality to each machine to bring it closer to the specification
of the other machine where possible, without blocking the native functionality of the
system it is running on. There are also lists of features which do not exist and could
not be easily duplicated, as well as suggested workarounds where appropriate. These
compatibility packages have been made available to the ARPANET community.

We found that users of these machines spent a considerable amount of time redoing
work that had already been done since there was no adequate library of user-written
tools to draw from. Thus we have undertaken to provide such a facility and to gather
as many tools as possible. The TOOLS system allows a user to select those tools that he
wishes to load either by giving a list of their names (in an initialization file, for
instance), or by selecting them from a menu. The menu can also be used to obtain on-
line documentation about each tool, and so provides a convenient way to browse the
tools. The following is a list of the tools that have so far been implemented or
collected:

FS-TO-FS-BACKUP -- Functions that can copy unbacked-up files from the Lisp

E. H. Shortliffe 30

5P41-RR00785-13 Details of Technical Progress

machine’s file system to another file system which is then backed’ up
to tape. This obviates the need to do backups to expensive and slow
cartridge tapes.

SYSTEM-MANAGER -- Provides for shared access to hierarchically structured sets of
files, allowing multiple people to work on development of a single
system or subsystem simultaneously.

DYNAMIC-SYSTEM-MENU -- Attempts to facilitate managing the screen so that the
size and position of windows can be easily tailored to the task at
hand.

NET-IMAGEN -- Allows printing on network based Imagen printers using the Impress
document formatting language. (Symbolics implementation from
MIT)

TCP-FINGER -- (Needed only on Explorer) Implements the popular FINGER person
lookup protocol for TCP/IP.

WHO-L/NE -- (Explorer only) Shows percentage-wise progress through editor buffers
during lengthy operations such as compilation.

VERTICALLY-ORDERED-MENU-ITEMS -- Allows multi-column menus to be
displayed with the items split into columns first rather than rows
first.

SMALL-FONTS -- Changes all standard windows to use a smaller font, allowing more
data to be displayed at a time.

SCREEN-EDIT-MIX/N -- Allows selected windows to be moved or reshaped by
clicking on small boxes in the margins of the windows.

MOUSE-SELECTABLE-PANE-MIXIN -- Allows constraint frame panes to be mouse
selectable.

MAKE-INTO-SCRIBE-FILE -- Converts a file with Lisp machine special characters
into Scribe format so that the special characters will be correctly
printed on Imagen printers.

INSPECT-HASH-TABLES -- (Needed on Explorer only) Causes the inspector to
display hashing data structures in a more readable Key/Value format.

GENERAL-NAMED-STRUCTURE-MESSAGE-HANDLER -- Causes selected structures to
error instead of returning NIL when they receive messages they do
not handle, facilitating debugging.

FILTER-WINDOW-DEBUGGER -- Allows specifying functions that will not be
displayed in the window debugger, eliminating the clutter of system
functions so that user is only presented with “interesting” stack
frames.

DEFSTRUCT-TYPE-CHECKING -- An addition to DEFSTRUCT that causes the access
functions of selected structures to check their arguments, facilitating
debugging.

DEBUG-STACK-GROUP -- (Explorer only) Allows users entering the debugger to
examine a particular stack group from the window debugger.

BATCH-PROCESSOR -- Facility for “running” command files overnight.

CHOOSE-VARIABLE-VALUES-MACROS -- Alternate interface to the CHOOSE-

31 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-13

VARIABLE-VALUES facility which does not require the user to
specify and manipulate specials.

All of these tools except for parts of NET-IMAGEN were developed at Stanford. We
are currently working with the Lisp machine vendors on licensing that will make it
possible to distribute these tools via the ARPANET. (Both Symbolics and TI are much
more restrictive in their software-sharing policies than is Xerox).

A great deal of work has been done in installing the Explorers in the SUMEX-AIM
research en vi ronmen t. This is one of the first installations of a large number of
Explorers, and we have participated actively in the “shaking down” of the Explorer, by
being a beta test site for release 2 of the Explorer system software, and release 1 of the
Explorer TCP/IP software. In the course of the testing, we submitted 56 written
software problem reports, and over 25 verbal reports, many of which included solutions.
As a result, the Explorer is now a well-integrated part of the research environment,
allowing many researchers to actively pursue their work by putting powerful
development tools on their desks.

Virtual Workstation Graphics

We have done a number of experiments with the remote connection of bitmapped
displays to hosts and workstations. Generally, the displays on Lisp machines are
tethered through a high bandwidth cable to their processors. This limits the flexibility
with which users can move from one Lisp machine to another (one must move
physically to another machine) and loses the ability of researchers to work from home
over telephone lines. A way of providing a more flexible display to processor
connection is to use a virtual graphics protocol, such as the V Kernel system developed
by Lantz [4]. This allows efficient communication of the contents of a display
window to be compactly represented, transmitted over a communication network, and
reconstructed on a remote bitmapped screen.

In order to more fully understand the integration of remote virtual graphics access to
workstation, a nearly complete implementation of a client interface of the Lantz Virtual
Graphics Protocol (VGP) was done within the Xerox Interlisp-D environment. This
implementation was done in such a way as to make the fact that the VGP was in the
system transparent to the Interlisp programmer. Several key steps were involved:

. Since the access to the workstation was to be done remotely on some kind
of network, it was necessary to write an IP/TCP/TELNET server which
handled the peculiarities of the TELNET protocol, and provided the usual
input and output data streams to a virtual graphics stream executive. This
executive then did remote login authentification and called the remote LISP
evaluator.

. In parallel to the LISP evaluation, a mechanism was necessary to interface
the client VGP into Interlisp-D. This was done using the IMAGEOP
objects which are associated with each stream within Interlisp-D. As a
consequence all reads and writes on the “standard” input and output streams
were defaulted to the VGP input and output streams when the workstation
was accessed remotely in this manner.

. As a consequence when one is connected to such a workstation through a
VGP server, the graphics engine was driven by standard calls to graphics
functions on the Interlisp-D workstation. Thus, the functionality of
windows, menus, text within windows, mouse interaction, and a suite of
drawing functions were all translated to the VGP and done remotely on the
user’s workstation.

E. H. Shortliffe 32

5P41-RR00785-13 Details of Technical Progress

This feasibility experiment proved that remote access to a LISP workstation using
virtual graphics protocols was practical. This paves the way for additional work to
allow researchers to take advantage of powerful user/graphics environments on Lisp
machines, even if not physically near the machine.

Network Services

A highly important aspect of the SUMEX system is effective communication within our
growing distributed computing environment and with remote users. In addition to the
economic arguments for terminal access, networking offers other advantages for shared
computing. These include improved inter-user commtmications, more effective software
sharing, uniform user access to multiple machines and special purpose resources,
convenient file transfers, more effective backup, and co-processing between remote
machines. Networks are crucial for maintaining the collaborative scientific and
software contacts within the SUMEX-AIM community.

Remote Networks

In addition to continuing our connection to TYMNET, we have implemented an
experimental connection to UNINET this past year in an attempt to improve services
for remote users. As reported last time, we have had serious difficulties getting needed
service from TYMNET for debugging network problems and users away from major
cities have problems with echo response times. The opinions of about 15 of our
heaviest TYMNET users were sought concerning the performance of TYMNET.
Though many were quite pleased, several with experience on a variety of other such
networks recommended a change. The TYMNET hardware interface itself has been
quite de,pendable in the past year.

Discussions were held with CompuServe and UNlNET concerning alternative service.
The UNINET connection was finally installed after a period of considerable review,
based on technical evaluations, cost analyses, and the experience of other network
customers with similar systems (e.g., BIONET). Requests for office phone locations
went out to 70 of our TYMNET users. Responses from 50 of them revealed only one
who would be unable to reach a UNINET node with a local phone call. The capability
of KERMIT data transfers was reviewed as was the capability for using the text editors,
EMACS and TVEDIT. On the whole, UNINET seems much more responsive for
current users, although evaluation is still underway. Both TYMNET and. UNINET
services are purchased jointly with the Rutgers Computers in Biomedicine resource to
maximize our volume usage price break.

We also continue our extremely advantageous connection to the Department of
Defense’s ARPANET, managed by the Defense Communications Agency (DCA). This
connection has been possible because of the long-standing basic research effort in AI
within the Knowledge Systems Laboratory that is funded by DARPA. ARPANET is the
primary link between SUMEX and other machine resources such as Rutgers-AIM and
the large AI computer science community supported by DARPA. We are also
attempting to establish a link to the DARPA wideband satellite network to facilitate the
rapid transfer of large amounts of data such as are involved with projects like our
Concurrent Symbolic Computing Architectures project.

Local Area Networks

For many years now, we have been developing our local area networking systems to
enhance the facilities available to researchers. Much of this work has centered on the
effective integration of distributed computing resources in the form of mainframes,
workstations, and servers. Network gateways and terminal interface processors (TIP’s)

33 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-13

were developed and extended .to link our environment together and are now the
standard system used in the campus-wide Stanford University network. We are
developing gateways to interface other equipment as needed too. A diagram of our
local area network system is shown in Figure 6 and the following summarizes our
LAN-related development work.

Ethernet Gateways -- In our heterogeneous network environment, in order to provide
workstation access to file servers, mail servers, and other computers within the network,
it is necessary to able to route multiple networking protocols through the network
gateways. Over the past year, support for both the Xerox NS and Symbolics/Texas-
Instrument CHAOSNET protocols were added to the SUMEX gateways. This support
not only provides the routers necessary to move such packets within this topology, but
also other miscellaneous services such as time, name/address lookup, host statistics,
address resolution, and routing table broadcast and query information. As a
consequence, the SUMEX gateways now support these protocols as well as the PUP, and
IP protocols. These services are unique within the SUMEX-AIM portion of the
Stanford University network, and give our researchers a networking environment that is
flexible, of high bandwidth, and extremely dependable.

Remote Ethernet -- Some preliminary design was done on a “home Ethernet
connection” to facilitate virtual graphics access and other network connections from
home workstations. The feasibility of this device was investigated to evaluate its cost
versus a similar device manufactured by Bridge Systems at a cost of $5,000.00. It is
believed that a less expensive device can be built that will conform to our remote
Ethernet needs. Although this device will communicate via modems and hence be much
slower than the 10 MBit/set Ethernet bandwidth, the fact that each remote station will
act as an Ethernet host without the RS-232 overhead, should improve file transfer
significantly.

Network Bootstrap -- Over the past year, SUMEX has participated in the definition of
a remote workstation bootstrap protocol which can flexibly load systems over networks,
even through gateway links to remote servers. The details of the protocol are
documented in RFC951, put out by the ARPANET development group. Implementation
of the BOOTP protocols required developing a new programmable read-only memory
(PROM) monitor for our workstations (MC 68000-based) with a more extensive
command structure to facilitate specification of remote boot file pathnames. If the
user specifies enough information (server address, workstation address, and file name),
then the PROM bypasses the BOOTP phase entirely and directly enters the transparent
FTP phase. This can be useful for manually booting from arbitrary internet hosts not
running BOOTP servers. The PROM code currently contains drivers for the 3COM
3C400 interface (at 4 possible multibus board addresses) and the Interlan N13210 (also
at 4 addresses).

The BOOTP/TFTP bootstrap uses a global structure located at the end of memory
during its operation. This structure is left intact after the booted program gets control.
In some cases a program (such as an EtherTIP) may want to fetch a configuration file
listing its addresses and options before starting up. With the mechanism provided by
this structure, that program can call the PROM resident TFTP code to fetch the desired
configuration file.

Network gateway modifications necessary to route BOOTP requests have been made and
installed in all Stanford gateways.

E. H. Shortliffe 34

5P41-RR00785-13 Details of Technical Progress

Laser Printing Services

Since the first Xerox laser printers were developed in the mid-1970’s, a’ number of
companies have produced computer-driven systems, such as Imagen and Adobe. These
systems have become essential components of the work environment of the SUMEX-
AIM community with applications ranging from scientific publications to hardcopy
graphics output for ONCOCIN chemotherapy protocol patient charts. We have done
much systems work to integrate laser printers into the SUMEX network environment so
they would be routinely accessible from hosts and workstations alike.

Over the past year, we purchased 2 new Imagen 12/300’s, upgraded an 81300 to a
12/300, and converted an old Hewlett-Packard 2688A to a 12/300 laser prin,ter for the
SUMEX-AIM community. These enhancements were funded by DARPA. The move to
12/300’s was motivated primarily by the ruggedness of the Ricoh LP-4120 print engine
used in those printers. Whereas the Canon LBP-CX print engine used in the 81300 has
an expected lifetime of 70,000 pages, the Ricoh LP-4120 has an expected lifetime of
700,000 pages. Since the KSL printed roughly 250,000 pages on laser printers last year
we decided it was time to move to a sturdier printing workhorse. Other beneficial
side-effects of the upgrade were: (1) higher print rate (12 pages-per-minute), (2) bigger
paper tray (half a ream), (3) blacker and more solid print, (4) crisper print, and (5)
cheaper supplies (half the price per page compared to the 8/300).

We have also acquired an Apple Laser Writer which interprets the PostScript page
description language. Within a few months of its introduction, the Apple Laser Writer
has become the most common laser printer on campus and around the world.
Economies of scale have made it possible for us to acquire this printer for under $4000.
SUMEX AppleNeVEthernet expertise will make it possible for us to attach the Laser
Writer to the high-bandwidth campus internet and operate the printer at the high-end
of its 8 page-per-minute capacity. (The vast majority of laboratory-owned Laser
Writers in the U.S. are driven over a low-bandwidth RS-232 Line yielding only 3 pages-
per-minute throughput and typically greater latency.) The PostScript page description
language is already the standard of choice at university and DARPA sites (judging by
traffic on the Laser-Lovers discussion group). It is generally agreed upon in these
communities that PostScript is among the easiest-to-generate and most expressive of the
page description languages in use today and reconciles these traits much more
effectively than other languages do.

Although anyone with $4000 can benefit from the advantages of owning a Laser Writer,
SUMEX users at Stanford have access to a Linotronics 300P typesetter owned by the
university. This printer interprets PostScript files identical to those which can be
printed on a Laser Writer, but renders its output on photographic paper up to 11” x
17” in size at a resolution of 1200 scans-per-inch. (At present, most of our printers
image at 300 spi and our finest printer is the agin, * Xerox Alto-Raven which images at
384 spi.) To exploit the special capabilities of this printer and to take advantage of the
economical Apple Laser Writer, we have begun an Interlisp implementation of an
“image stream” driver for PostScript. Unilogic has already added Postscript support to
Scribe and Adobe has implemented Postscript support for TeX.

General User Software

We have continued to assemble (develop where necessary) and maintain a broad range
of user support software. These include such tools as language systems, statistics
packages, vendor-supplied programs, text editors, text search programs, file space
management programs, graphics support, a batch program execution monitor, text
formatting and justification assistance, magnetic tape conversion aids, and user
information/help assistance programs.

35 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-13

A particularly important area of user software for our community effort is a set of
tools for inter-user communications. We have built up a group of programs to
facilitate many aspects of communications including interpersonal electronic mail, a
“bulletin board” system for various special interest groups to bridge the gap between
private mail and formal system documents, and tools for terminal connections and file
transfers between SUMEX and various external hosts. Examples of work on these sorts
of programs have already been mentioned in earlier sections on operating systems and
networking.

At SUMEX-AIM we are committed to importing rather than reinventing software where
possible. As noted above, a number of the packages we have brought up are from
outside groups. Many avenues exist for sharing between the system staff, various user
projects, other facilities, and vendors. The availability of fast and convenient
communication facilities coupling communities of computer facilities has made possible
effective intergroup cooperation and decentralized maintenance of software packages.
The many operating system and system software interest groups (e.g., TOPS-20, UNIX,
D-Machines, network protocols, etc.) that have grown up by means of the ARPANET
have been a good model for this kind of exchange. The other major advantage is that
as a by-product of the constant communication about particular software, personat
connections between staff members of the various sites develop. These connections
serve to pass general information about software tools and to encourage the exchange of
ideas among the sites and even vendors as appropriate to our research mission. We
continue to import significant amounts of system software from other ARPANET sites,
reciprocating with our own local developments. Interactions have included mutual
backup support, experience with various hardware configurations, experience with new
types of computers and operating systems, designs for local networks, operating system
enhancements, utility or language software, and user project collaborations. We have
assisted groups that have interacted with SUMEX user projects get access to software
available in our community (for more details, see the section on Dissemination on page
89).

Operations and Support

The diverse computing environment that SUMEX-AIM provides requires a significant
effort at operations and support to keep the resource responsive to community project
needs. This includes the planning and management of physical facilities such as
machine rooms and communications, system operations routine to backup and retrieve
user files in a timely manner, and user support for communications, systems, and
software advice. Of course, the move of our groups to new space in the Medical School
Office Building has required major planning and care to ensure minimum downtime for
our computing environment and much systems and electronics work to outfit the new
space.

We use students for much of our operations and related systems programming work.
We spend significant time on new product review and evaluation such as Lisp
workstations, terminals. communications equipment, network equipment, microprocessor
sys terns, mainframe developments, and peripheral equipment. We also pay close
attention to available video production and projection equipment, which has proved so
useful in our dissemination efforts involving video tapes of our work.

E. H. Shortliffe 36

5P41-RR00785-13 Details of Technical Progress

III.A.3.4. Core AI Research
We have maintained a strong core AI research effort in the SUMEX-AIM resource
aimed at ‘developing information resources, basic AI research, and tools of general
interest to the SUMEX-AIM community. It should be noted that the SUMEX resource
grant from NIH supports much of the computing environment for this core AI work1
but NIH supports only a small part of the manpower and other support for core AI.
Substantial additional support for the personnel costs of our core AI research (roughly
comparable to the NIH investment in computing resources) comes from DARPA, ONR,
NSF, NASA, and several industrial basic research contracts to the Knowledge Systems
Laboratory.

The following summary reports progress on the basic or core research activities within
the KSL. The development of the ONCOCIN system (under Professor Shortliffe) is an
important part of our core research proposal for the renewal’ period, Progress on that
work is reported separately in Section IV.A.3, however, because its efforts have been
supported as a collaborative and resource-related research project up until now.
Together, this work explores a broad range of basic research ideas in many application
settings, all of which contribute in the long term to improved knowledge based systems
in biomedicine.

Rationale

Our core AI research work has long been the mainstay on which our extensive list of
applications projects are based. Medical information -- both medical data and medical
knowledge -- is the key to progress in research and excellence in biomedical science
and clinical practice. As the rapid explosion of information continues, clinicians and
biomedical scientists must turn to computers for help in managing the information, and
in applying it to complex situations.

Artificial Intelligence (AI) methods are particularly appropriate for aiding in the
management and application of knowledge because they apply to information
represented symbolically, as well as numerically, and to reasoning with judgmental rules
as well as logical ones. They have been focused on medical and biological problems for
over two decades with considerable success. This is because, of ail the computing
methods known, AI methods are the only ones that deal explicitly with symbolic
information and problem solving and with knowledge that is heuridtic (experiential) as
well as factual.

Expert systems are one important class of applications of AI to complex problems
-- in medicine, science, engineering, and elsewhere. An expert system is one whose
performance level rivals that of a human expert because it has extensive domain
knowledge (usually derived from a human expert); it can reason about its knowledge to
solve difficult problems ih the domain; it can explain its line of reasoning much as a
human expert can; and it is flexible enough to incorporate new knowledge without
reprogramming. Expert Systems draw on the current stock of ideas in Al, for example,
about representing and using knowledge. They are adequate for capturing problem-
solving expertise for many bounded problem areas. Numerous high-performance, expert
systems have resulted from this work in such diverse fields as analytical chemistry,
medical diagnosis, cancer chemotherapy management, VLSI design, machine fault
diagnosis, and molecular biology. Some of these programs rival human experts in
solving problems in particular domains and some are being adapted for commercial use.

‘DARPA funds have also helped substantially in upgrading our mainframe systems and in the purchase of
community Lisp workstations

37 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-13

Other core research projects have developed generalized software tools for representing
and utilizing knowledge (e.g., EMYCIN, UNITS, AGE, MRS, GLISP) as well as
comprehensive publications such as the three-volume Handbook of Artificial
Intelligence and books summarizing lessons learned in the DENDRAL and MYCIN
research projects.

There is considerable power in the current stock of techniques, as exemplified by the
rate of transfer of ideas from the research laboratory to commercial practice. But it is
also clear that today’s technology needs to be augmented to deal with the complexity of
medical information processing.

Our core research goals, as outlined in the next section, are to analyze the limitations of
current techniques and to investigate the nature of methods for overcoming them.
Long-term success of computer-based aids in medicine and biology depend on
improving the programming methods available for representing and using domain
knowledge. That knowledge is inherently complex: it contains mixtures of symbolic
and numeric facts and relations, many of them uncertain; it contains knowledge at
different levels of abstraction and in seemingly inconsistent frameworks; and it links
examples and exception clauses with rules of thumb as well as with theoretical
principles. Current techniques have been successful only insofar as they severely limit
this complexity. As the applications become more far-reaching, computer programs will
have to deal more effectively with richer expressions and much more voluminous
amounts of knowledge.

Highlights of Progress

In the last year, research has progressed on several fundamental issues of AI. As in the
past, our research methodology is experimental; we believe it is most fruitful at this
stage of AI research to raise questions, examine issues, and test hypotheses in the
context of specific problems such as management of patients with Hodgkin’s disease.
Thus, within the KSL we build systems that implement our ideas for answering (or
shedding some light on) fundamental questions; we experiment with those systems to
determine the strengths and limits of the ideas; we redesign and test more: we attempt
to generalize the ideas from the domain of implementation to other domains; and we
publish details of the experiments. Many of these specific problem domains are
medical or biological. In this way we believe the KSL has made substantial
contributions to core research problems of interest not just to the AIM community but
to AI in general.

In addition to the technical reports listed below, the following survey articles were
published during this year. These are of central interest to AI researchers and of direct
relevance to the mission of the SUMEX-AIM resource.

SURVEY ARTICLES: KSL-85-19, KSL-85-27, KSL-85-28, KSL-85-37, KSL-85-54,
KSL-86-17, KSL-86-32

Progress is reported below under each of the major topics of our work. Citations are to
KSL technical reports listed in the publications section.

1. Knowledge representation: How can the knowledge necessary for complex
problem solving be represented for its most effective use in automatic
inference processes ? Often, the knowledge obtained from experts is heuristic
knowledge, gained from many years of experience. How can this knowledge,
with its inherent vagueness and uncertainty, be represented and applied?

Work continues on BBl, with its explicit representation of control
knowledge, as reported last year. In addition, part of our research on

E. H. Shortliffe 38

5P41-RR00785-13 Details of Technical Progress

NEOMYCIN is focused on using a flexible, rich representation of control
knowledge so that we can model problem solving at the strategic level as
well as at the tactical level.

[See KSL technical memos KSL-85-16, KSL-85-17, KSL-85-31, KSL-86-11,
KSL-86-27.1

2. Blackboard Architectures and Control: How can we design flexible control
structures for powerful problem solving programs?

We have continued to develop the BBl blackboard architecture for systems
that reason about -- control, explain, and learn about -- their own actions.
We have developed domain-independent control knowledge sources for
refining abstract control plans. We have developed capabilities for
explaining problem-solving actions by incrementally elaborating the control
plan underlying the decisions to perform them. We have developed
capabilities for acquiring new control knowledge from domain experts
automatically.

Otir most innovative work on BBl focused on the idea that reasoning
effectively about action requires knowledge about action. In particular, it
requires knowledge of: the hierarchy of action types; the patterns of formal
parameters defining all *actions types; the network of concepts for
instantiating formal parameters; the modifiers that can restrict the scopes of
defined concept types; the translations of terminal action patterns into
executable code; and the partial matches between patterns defining different
action types. We developed a body of such knowledge (the ACCORD
framework discussed below) for the actions involved in assembling
arrangements of objects under constraints. We used the PROTEAN system,
which is implemented in BBl, to demonstrate the power of task-specific
action knowledge to enhance control, explanation, and learning capabilities.
We have also begun to investigate the applicability of this knowledge to
another design problem, site layout.

In addition to the two applications mentioned above, several other scientists
at Stanford and at other research and industrial laboratories have begun
developing application systems in BBl.

[See KSL technical memos KSL 84-16, KSL 85-2, KSL 85-35, KSL 86-38.1

3. Advanced Architectures: What kinds of software tools and system
architectures can provide orders of magnitude speedup in the performance of
expert systems? The Advanced Architectures Project is a long-range project
with two related goals:

. To realize a new generation of software system architectures using
parallelism to achieve high-speed computation in artificial intelligence
applications.

l To specify multiprocessor hardware system architectures that support
those parallel computations.

The basic problem we are addressing is to increase the speed of execution of
expert systems through the use of parallel computations on a multiprocessor
computer system. Part of the effectiveness of expert systems, particularly
for real-time applications such as continuous signal data understanding, lies
in the speed of execution, or throughput rate. However, for many

39 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-13

significant applications of this type, .projected performance limits of
hniprocessors fall short of the speed required by as much as several orders
of magnitude. Multiprocessor parallel computing must be used to attain the
necessary levels of performance.

The anticipated computational requirements for the next decade cannot be
realized by just using parallelism at only one particular level of computation
(for example, parallel left-hand-side. rule matching in rule-based systems).
To understand the effectiveness of parallel implementations of expert
systems, we must study both the programming problems and the performance
issues at all levels of the computational hierarchy:

. The application level.

. The problem-solving framework level.

. The programming language level.

. The hardware system architecture level.

Our research emphasis is therefore on overall software and hardware system
architectures for the parallel execution of expert systems.

During the past *year, with principal support from DARPA under the
Strategic Computing Program, we have demonstrated significant progress at
each of the levels. We have also completed the first of a series of “vertical
slice” experiments, in which a choice is made at each design level and a
simulated execution of the resulting system is analyzed.

Application level

The methodology employed in this project is to select an application and use
it as the driver that determines the requirements at the underlying system
design levels. That is, the application, or class of applications, should
determine the architecture rather than the other way around. Consequently,
it is necessary to choose applications very carefully with respect to their
complexity, generality and potential for significant speedup.

During the past year we defined and started the development of a new
application, within the area of signal understanding, information fusion and
situation assessment. The new application, called AIRTRAC, concerns the
classification and tracking of light aircraft, some of whom are deliberately
trying to evade detection (e.g., smugglers). The sensor data include both
acoustic and radar data from distributed sources. Other data include flight
plans and intelligence reports. This application has many desirable
characteristics, including:

. Multiple sources of input, including both “low-level” (radar, acoustic)
and “high-level” (intelligence reports) data;

. Need for both data-driven and model-driven (e.g., using knowledge of
intentions or expectations of future behavior) reasoning.

E. H. Shortliffe 40

5P41-RR0078513 Details of Technical Progress

Problem-solving framework level

We have completed the first-pass development of two parallel blackboard
framework systems, CAGE and POLIGON. A third framework, CAOS, is
complete and has been used for the first vertical slice experiment.

CAGE is an extension of the AGE system that contains concurrency
primitives for building parallel constructs. In contrast with POLIGON,
CAGE represents a conservative, incremental approach to building parallel
systems. CAGE will run both on QLAMBDA and CAOSKARE simulators,
or can be run serially. POLIGON is a demon-driven blackboard system in
which all blackboard nodes are active agents. Changes in the blackboard
nodes trigger rules to be fired. POLIGON will run on the CAOSKARE
simulator. CAOS (“Concurrent Asynchronous Object System”) is a set of
language extensions to Lisp for multiprocessor systems. CAOS allows the
user to express process and data locality and interprocess communication,
organized in an object-oriented manner.

Programming Language Level

We have experimented with Lisp-based languages. One is QLAMBDA
(renamed QLISP), an extension to Lisp for a multi-processor, shared
memory architecture. (See R. P. Gabriel and J. McCarthy, “Queue-based
Multi-processing Lisp,” in Proc. of the 1984 Symposium on Lisp and
Functional Programming, August 1984.) We have also designed and partially
implemented a concurrent Lisp for the CARE distributed-memory family of
multiprocessor architectures. CAREL (CARE Lisp) is a distributed-memory
variant of QLISP. CAREL supports features (like MultipLisp), truly parallel
LET binding (like QLISP), active objects with locality and state (like OIL),
programmer or automatic specification of locality of computations (like
para-functional programming or Flat Concurrent Prolog), and both static
assignment of process to processor and dynamic spread of recursive
computations through the network via remote function call (like V).

Hardware System Architecture Level

Our activity at this level has been focused on the testing and refinement of
CARE, a set of executable system component specifications that can be used
to specify a parameterized family of hardware system architectures. The
architecture consists of a number of sites interconnected under some
specified communication topology. Each site consists of (1) an evaluator (of
Lisp forms), (2) an operator that performs message handling, process
scheduling, process creation and process synchronization, (3) network ports
for message routing, (4) FIFO queues that tie these components together, and
(5) a memory -- hence a family of distributed memory machines with a
processor of parameterized capability at each node. By specializing nodes to
consist only of subsets of the above components, shared memory systems can
also be simulated. CARE also permits specification of a suite of instrument
probes and display panels that can be used to monitor the simulation of the
hardware system.

41 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-13

Vertical Slice Experiment

We completed the first set of comprehensive experiments in implementing
and executing knowledge-based expert systems on multiprocessor machines.
This experiment consists of running the ELINT application, written in
ZetaLisp on CAOS running on the CARE simulator. ELINT is a prototype
passive radar signal understanding system that was originally implemented in
AGE.

The experiment has two objectives. The first is to investigate the quality of
solution and the amount of communication as a function of various degrees
of inter-process control. In particular, we are investigating the types and
amounts of serialization required to assure an acceptable level of solution
quality for ELINT. The second investigates overall execution speedup (or
“speeddown”) as a function of the number of processors. In particular, a
version of ELINT with control adequate to assure satisfactory solution
quality was run on simulated CARE arrays ranging in size from four to
sixty four processors. The major relations under investigation are execution
time and communication behavior as a function of array size. Results of
these experiments are currently being analyzed and documented.

[See KSL technical memos KSL-85-24, KSL-86-10, KSL-86-19, KSL-86-20,
KSL-86-22, KSL-86-31, KSL-86-41.1

4. Knowledge Acquisition: How is knowledge acquired most efficiently from
human experts, from observed data, from experience, and from discovery?
How can a program discover inconsistencies and incompleteness in its
knowledge base? How can the knowledge base be augmented without
perturbing the established knowledge base?

Several parallel lines of research on machine learning are in progress,
representing a broad spectrum of possibilities for aiding in the construction
of new knowledge bases for expert systems. Of these, significant progress
was made on two aspects of learning by induction from examples. These
two are documented in PhD dissertations by Li-Min Fu and Thomas
Dietterich.

Fu’s dissertation investigates methods of induction in the context of learning
rules and meta-rules for diagnosing cases of jaundice. The program, called
RL, uses a rough model, or half-order theory, of the domain in order to
guide a systematic search through a space of plausible concept definitions
and associations. Experiments show that the quality of rules learned in this
fashion are as good as rules derived from texts and physicians through
knowledge engineering.

Dietterich’s dissertation explores another important problem in theory
formation: interpreting observed data in the first place. In the case that an
emerging, partially formed theory is used to interpret the data, there is
ample opportunity for erroneous extensions to the theory that is being
developed to explain the data. We have defined a method for “theory-
driven data interpretation” that propagates constraints in order to determine
a consistent interpretation of the data. This has been implemented in a
program called PRE. The domain in which PRE operates is learning
descriptions of UNIX file commands from examples of I/O behavior of a
UNIX system in use.

In addition, we have completed a prototype program that serves as a learning

E. H. Shortliffe 42

5P41-RR00785-13 Details of Technical Progress

apprentice for systems developed under NEOMYCIN. The model is general,
and the program is being tested in NEOMYCIN’s domain of medical
diagnosis. Its purpose is to “watch” the interaction of an expert diagnosing
a difficult case and to build a set of knowledge structures that will allow
NEOMYCIN to diagnose similar cases in the same way.

“Chunking” is a learning mechanism that acquires rules from goal-based
experience. SOAR is a general problem-solving architecture with a rule-
based memory that can use the learning capabilities of chunking for the
acquisition and use of macro-operators. Rosenbloom et al. are investigating
chunking in SOAR and find that chunking obtains extra scope and
generality from its intimate connection with the sophisticated problem solver
(SOAR) and the memory organization of the production system.

Two MSAI theses (Hewett and Harvey) address learning from human experts.
Hewett’s program, MARCK, interviews a domain expert to determine why
the expert prefers problem-solving actions not chosen by the application
system. Harvey’s program, WATCH (which is not completely implemented
yet), abstracts a domain expert’s control heuristics by observing the his or
her problem-solving actions. Both of these programs operate in the context
of application systems implemented in the BBl architecture.

[Preliminary results have been published in KSL-85-11, KSL-85-20,
KSL-85-26, KSL-85-30, KSL-85-32, KSL-85-34, KSL-85-35, KSL-85-36,
KSL-85-38, KSL-85-42, KSL-85-43, KSL-85-44, KSL-85-51, KSL-85-53,
KSL-85-56, KSL-86-1, KSL-86-6, KSL-86-7, KSL-86-35, KSL-86-38.1

5. Knowledge Utilization: By what inference methods can many sources of
knowledge of diverse types be made to contribute jointly and efficiently
toward solutions? How can knowledge be used intelligently, especially in
systems with large knowledge bases, so that it is applied in an appropriate
manner at the appropriate time?

A PhD dissertation by Greg Cooper has been completed in which a model
of inexact reasoning is proposed and demonstrated using both probabilistic
and causal knowledge. The key idea is that estimates of probability ranges
can be modified by using knowledge of causal relations.

[See KSL technical memos KSL-85-14, KSL-85-18, KSL-85-23, KSL-85-25,
KSL-85-35, KSL-85-40, KSL-85-41, KSL-85-46, KSL-86-26, KSL-86-30.1

6. Software Tools: How can specific programs that solve specific problems be
generalized to more widely useful tools to aid in the development of other
programs of the same class?

We have continued the development of new software tools for expert system
construction and the distribution of packages that are reliable enough and
documented so that other laboratories can use them. These include the old
rule-based EMYCIN system, MRS, and AGE.

We have continued our development and refinement of BBl, including the
following new capabilities: generic control knowledge sources for refining
abstract control plans; graphical display of the dynamic control plan and
other system-state information; strategic explanation of problem-solving
actions; two programs for automatically learning control heuristics from
experts; general knowledge-base facilities; and “mouse-controlled” interfaces
for all system functions.

43 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-13

We also have extended BBl to exploit any user-defined “framework”
embodying task-specific action knowledge (see “Progress” above). We have
implemented the ACCORD framework for systems that assemble
arrangements of objects under constraints. We have released BBl to
approximately fifteen research groups outside of Stanford.

The ACCORD language allows definition of knowledge sources at a high
level of description and represents a significant improvement in clarity and
ease of definition of knowledge sources. We plan to release ACCORD
sometime during the summer of 1986.

[See KSL technical memos KSL-85-12, KSL-85-15, KSL-86-38.1

7. Explanation and Tutoring: How can the knowledge base and the line of
reasoning used in solving a particular problem be explained to users? What
constitutes a sufficient or an acceptable explanation for different classes of
users? How can knowledge in a system be transferred effectively to students
and trainees?

We have been concerned for years about the understandability of expert
systems. We are currently focusing on the high resolution bit-mapped
displays on Lisp workstations as a desirable mode of explaining the contents
of knowledge bases. A prototype program, called GUIDON-WATCH, has
been written and documented that provides easily understood windows into
the problem solving activities of NEOMYCIN.

A knowledge-based system must not only be able to recommend an action
but also must provide an explanation as to why that action is the most
desirable and what task or subtask the proposed action will accomplish.
Control knowledge in BBl has a hierarchical structure of heuristics, a
current focus, and one or more levels of strategy for solving the problem.
Since BBl’s control knowledge is explicitly represented as knowledge sources,
an explanation of the problem solving can be constructed at each level of
abstraction. BBl offers several ways for the user to determine the rationale
behind its recommendations, including the “Explain”, “Describe”, and “Why”
commands.

Jeff Harvey designed and built the “Why” facility to run under BBl. It
differs from those found in rule based systems because it explains why it
recommends an action, rather than just explaining why the system is asking
a question. When first asked “Why”, the system describes the heuristics used
to evaluate feasible actions. On additional “Why” queries, the system
describes control decisions in more generality, continuing until the highest
level of abstraction is reached. The “Describe” command is similar to
“Why”, but all of the control decisions are explained at the present level of
abstraction.

“Explain” gives the rationale for why the decision is a good thing to do, in
terms of the ratings of that action by each of the active heuristics. The
action with the highest rating is the one recommended by BBl.

[See KSL technical memos KSL-85-39, KSL-86-2, KSL-86-15, KSL-86-34.1

8. Planning and Design: What are reasonable and effective methods for
planning and design? How can symbolic knowledge be coupled with
numerical constraints? How are constraints propagated in design problems?

E. H. Shortliffe 44

5P41-RR00785-13 Details of Technical Progress

We have made significant progress in .this last year in merging AI and
decision-analytic methods in developing plans. This is largely reflected in
the program named ONYX, which “backs up” the reasoning in ONCOCIN
with planning at a more fundamental level.

[See KSL technical memos KSL-85-10, KSL-85-52, KSL-85-55.]

9. Diagnosis and Therapy Management: How can we build a diagnostic system
that reflects any of several diagnostic strategies? How can we use knowledge
at different levels of abstraction in the diagnostic process? How can a
rational therapy plan be devised that is tailored to the specifics of an
individual case?

ONCOCIN (see separate section on ONCOCTN) is the primary vehicle for
studying therapy management, and substantial progress has been made in
representing and using therapy plans.

[See KSL technical reports: KSL-85-21, KSL-85-22, KSL-85-29,
KSL-85-33, KSL-85-50, KSL-86-3, KSL-86-4, KSL-86-5, KSL-86-9.]

Relevant Publications

KSL 85-10

KSL 85- 11

KSL 85-12

KSL 85-14

KSL 85-15

KSL 85-16

KSL 85-17

KSL 85-18

KSL 85-19

KSL 85-20

KSL 85-21

Curtis Langlotz, Lawrence Fagan, Samson Tu, John Williams, and Branimir
Si kit; ONYX: An Architecture for Planning in Uncertain Environments,
May 1985. 7 pages

Shoko Tsuji, Edward H. Shortliffe; Graphics for Knowledge Engineers: A
Window on Knowledge Base Management, April 1985. 23 pages

Stuart J. Russell; The Compleat Guide to MRS, June 1985. 121 pages

Matthew L. Ginsberg; Implementing Probabilistic Reasoning, April 1985. 12
paw
Lane, Differding, and Shortliffe; Graphical Access to Medical Expert
Systems: II. Design of an Interface for Physicians, July 1985. 22 pages

(Working Paper) William J. Clancey; Representing Control Knowledge as
Abstract Tasks and Metarules, April 1985. 56 pages

Mark Musen, Curtis Langlotz, Lawrence Fagan, and Edward Shortliffe;
Rationale for Knowledge Base Redesign in a Medical Advice System, April
1985. 6 pages

Vineet Singh, and Michael Genesereth; PM: A Parallel Execution Model
for Backward-Chaining Deductions, August 1985. Submitted for
publication to: Future Computing Systems, 1985. 26 pages

Mark H. Richer; An Evaluation of Knowledge-Based’ Software Tools, May
1985. 21 pages

STAN-CS-85-1068. Mark H. Richer and William J. Clancey; GUIDON-
WATCH: A Graphic interface for Browsing and Viewing a Knowledge
Based System, September 1985. IEEE Computer Graphics and
Applications, Vol. 4, No. 11, November 1985, pp. 51-64. 33 pages

D.H. Hickam, E.H. Shortliffe, M.B. Bischoff, A.C. Scott, C.D. Jacobs; A
Study of the Treatment Advice of a Computer-Based Cancer Chemotherapy
Protocol Advisor, July 1985.
Medicine, 1985. 34 pages

To appear in the: Annals of Internal

45 E. H. Shortliffe

KSL 85-22 D.L. Kent, E.H. Shortliffe, R.W. Carison. M.B. Bischoff, C.D. Jacobs;
Improvements in Data Collection Through Physician Use of a Computer-
Based Chemotherapy Treatment Consultant, May 1985. 20 pages

KSL 85-23 (Working Paper) David Heckerman; Probabilistic Interpretations for
MYCIN’s Certainty Factors, May 1985. 28 pages

KSL 85-24 Penny Nii; Research on Blackboard Architectures at the Heuristic
Programming Project, May 1985. 11 pages

KSL 85-25 Matthew L. Ginsberg; Decision Procedures, September 1985. 22 pages

KSL 85-26 David C. Wilkins, William J. Clancey, & Bruce G. Buchanan; An Overview
of the Odysseus Learning Apprentice, August 1985. Machine Learning: A
Guide to Current Research, Academic Press, 1986. 4 pages

KSL 85-27 (Working Paper)] G.D. Rennels, E.H. Shortliffe; Medical Advice Systems.
May 1985. To appear in: Encyclopedia of Artificial Intelligence,
published by John Wiley & Sons. 16 pages

KSL 85-28 (Working Paper) E.H. Shortliffe; The State of the Art of the Science.
Proceedings of the Conference on Medical Information Sciences, U. of
Texas Health Science Center at San Antonio, July 1985. 10 pages

KSL 85-29 Michael G. Walker, Robert Blum, and Lawrence M. Fagan; MINIMYCIN:
A Miniature Rule-Based System. Published in: Clinical Computing, Vol. 2,
No. 4, 1985. II pages

KSL 85-30 Differing, Combs, Musen, Lane, Fagan, & Shortliffe; Graphical Access to
Medical Expert Systems: III Design of a Knowledge Aquisition
Environment, August 1985.

KSL 85-31 William J. Clancey; Review of Sowa’s “Conceptual Structures”, August 1985.
To appear in the: Journal of Artificial intelligence, 1985. 12 pages

KSL 85-32 (Working Paper) Timothy F. Thompson and William J:Clancey; The
CASTER System: An Experiment in Knowledge Acquisition Within a
Generic Expert System Shell, August 1985. 25 pages

KSL 85-33 James F. Brinkley; Knowledge Driven Ultrasonic Three-Dimensional Organ
Modelling, August 1985. Published in: IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-7, No. 4, pp 431-441. J’uly
1985. 11 pages.

KSL 85-34 John Laird, Paul Rosenbloom, & Allen Newell; Chunking in SOAR: The
Anatomy of a General Learning Mechanism, September 1985. In: Machine
Learning, Vol. 1, No. 1, 1986. Also appears as Xerox PARC ISL-13 and
CMU-CS-85-154. 34 pages

KSL 85-35 Barbara Hayes-Roth, Bruce Buchanan, Olivier Lichtarge, Mike Hewett, Russ
Altman, James Brinkley, Craig Cornelius, Bruce Duncan, and Oleg
Jardetzky; Elucidating Protein Structure from Constraints in PROTEAN,
October 1985. Submitted for publication to: Insight Series in Applied AI.
29 pages

KSL 85-36 (Working Paper) Peter Karp; Thesis Proposal: Qualitative Simulation and
Discovery in Molecular Biology, September 1985. 31 pages

KSL 85-37 Bruce G. Buchanan; EXPERT SYSTEMS: Working Systems and the
Research Literature, December 1985. Appears in: Expert Systems. 55 pages

Details of Technical Progress 5P41-RR00785-13

E. H. Shortliffe 46

5P41-RR00785-13 Details of Technical Progress

KSL 85-38

KSL 85-39

KSL 85-40

KSL 85-41

KSL 85-42

KSL 85-43

KSL 85-44

KSL 85-46

KSL 85-50

KSL 85-51

KSL 85-52

KSL 85-53

KSL 85-54

KSL 85-55

KSL 85-56

Bruce G. Buchanan; Some Approaches to Knowledge Acquisition, October
1985. Appears in: Proceedings of the Third Int. Workshop on Machine
Learning. 5 pages

(Working Paper) Glenn D. Rennels, Edward H. Shortliffe and Perry
L. Miller; A Model of Choice and Explanation in Medical Management,
October 1985. Appears in: Computers and Biomedical Research. 17 pages

(Thesis) Jeffrey S. Rosenschein; Rational Interaction: Cooperation Among
Intelligent Agents, October 1985. 133 pages

Buchanan, B.G., Hayes-Roth, B., Lichtarge, O., Altman, A., Brinkley, J.,
Hewitt, M., Cornelius, C., Duncan, B., and Jardetzky, 0.: The Heuristic
Refinement Method for Deriving Solution Structures of Proteins, March
1986. In: Proceedings of the National Academy of Science. 10 pages

Li-Min Fu and Bruce G. Buchanan; Inductive Knowledge Acquisition for
Rule-Based Expert Systems, October 1985. Submitted for publication:
Artificial Intelligence. 34 pages

(Working Paper) Robert L. Blum; Two Stage Regression: Application to a
Time-Oriented Clinical Database, October 1985. To appear in: Statistics
in Medicine. 27 pages

(Thesis) Li-Min Fu; Learning Object-Level and Meta-Level Knowledge in
Expert Systems, November 1985. 229 pages

(Working Paper) Richard Treitel and Michael R. Genesereth; Choosing
Directions for Rules, March 1986. Accepted for publication by A&II-86.
Submitted for publication to: Journal of Automated Reasoning. 36 pages

(Journal Memo) G.D. Rennels, E.H. Shortliffe, F.E. Stockdale and P.L.
Miller: Reasoning from the Clinical Literature: a “Distance” Metric,
November 1985. To appear in: Proceedings of AAMSI Congress 86,
Anaheim, CA, May 1986. 6 pages

(Journal Memo) M.A. Musen, J.A. Rohn, L.M. Fagan and E.H. Shortliffe;
Knowledge Engineering for a Clinical Trial Advice System: Uncovering
Errors in Protocol Specification, November 1985. To appear in;
Proceedings of AAMS/ Congress 86, Anaheim, CA, May 7-10, 1985. 5
pages
(Journal Memo) C.P. Langlotz, L.M. Fagan and E.H. Shortliffe; Overcoming
Limitations of Artificial Intelligence Planning Techniques, November 1985.
To appear in: Proceedings of AAMSr Congress 86, Anaheim, CA, May
8-10, 1986. 5 pages

(Journal Memo) M.A. Musen, L.M. Fagan and E.H. Shortliffe; Graphical
Specification of Procedural Knowledge for an Expert System, December
1985. To be presented at: Second IEEE Computer Society Workshop on
Visual Languages, Dallas, TX, June 1986. 18 pages

Devika Subramanian and Bruce G. Buchanan: A General Reading List for
Artificial Intelligence, December 1985. 63 pages

(Working Paper) C.P. Langlotz, L.M. Fagan, S.W. Tu and B.1. Sikic; An
Architecture for Planning under Uncertainty, December 1985. 19 pages

(Journal Memo) D.M. Combs, M.A. Musen, L.M. Fagan and E.H.
Shortliffe; Graphical Entry of Procedural and Inferential Knowledge,

47 E. H. Shortliffe

KSL 86-l (Journal Memo) M.A. Musen, L.M. Fagan, D.M. Combs and E.H.
Shortliffe; Facilitating Knowledge Entry for an Oncology Therapy Advisor
Using a Model of the Application Area, January 1986. Accepted for
publication in: Proceedings, MEDiNFO 86. 9 pages

KSL 86-2 (Journal Memo) E. Horvitz, D. Heckerman, B. Nathwani and L. Fagan; The
Use of a Heuristic Problem-Solving Hierarchy to Facilitate the Explanation
of Hypothesis-Directed Reasoning, January 1986. Accepted for publication
in: Proceedings, MED/NFO 86. 5 pages

KSL 86-3 (Journal Memo) C.P. Langlotz, L.M. Fagan, S.W. Tu, B.I. Sikic and E.H,
Shortliffe; Combining Artificial Intelligence and Decision Analysis for
Automated Therapy Planning Assistance, January 1986. Accepted for
publication in: Proceedings, MEDINFO 86. 5 pages

KSL 86-4 (Journal Memo) M.G. Kahn, L.M. Fagan and E.H. Shortliffe; Context-
Specific Interpretation of Patient Records for a Therapy Advice System,
January 1986. Accepted for publication in: Proceedings, MEDINFO 86. 5
pages

KSL 86-5 (Journal Memo) G.D. Rennels, E.H. Shortliffe, F.E. Stockdale and P.L.
Miller; Reasoning from the Clinical Literature: The Roundsman System,
January 1986. Accepted for publication in: Proceedings, MEDINFO 86.
5 pages

KSL 86-6 (Journal Memo) SM. Downs, M.G. Walker and R.L. Blum; Automated
Summarization of On-Line Medical Records, January 1986. Accepted for
publication in: Proceedings, MEDINFO 86. 5 pages

KSL 86-7 (Journal Memo) M.G. Walker and R.L. Blum; Towards Automated Discovery
from Clinical Databases: the RADIX Project, January 1986. Accepted for
publication in: MEDINFO 86 5 pages

KSL 86-9 (Journal Memo) Gregory F. Cooper: A Diagnostic Method That Uses Casual
Knowledge and Linear Programming in the Application of Bayes’ Formula,
January 1986. Accepted for publication in: Computer Methods and
Programs in Biomedicine. 24 pages

KSL 86-10 (Working Paper) James Rice; The Poligon User’s Manual, February 1986.
68 pages

KSL 86- 11 (Working Paper) William J. Clancey; From Guidon to Neomycin and
Heracles in Twenty Short Lessons, February 1986. 48 pages

KSL 86-15 (Working Paper) William J. Clancey; Qualitative Student Models, February
1986. Submitted for publication to: First Annual Review of Computer
Science. 88 pages

KSL 86-17 Robert S. Engelmore & Craig W. Cornelius; Heuristic Programming Project,
October 1982 - September 1985, Final Report, February 1986. 16 pages

KSL 86-19 J. P. Rice; Poligon, A System for Parallel Problem Solving, April 1986. To
appear in Proceedings of DARPA Workshop on Expert Systems
Technology Base, Asilomar, April 1986. 19 pages

KSL 86-20 J.R. Delaney; Multi-System Report Integration Using Blackboards, March
1986. Accepted for publication in: I986 American Control Conference. 12
paw

Details of Technical Progress 5P41-RR00785-13

December 1985. To appear in: Proceedings of AAMSI Congress 1986 5
pages

E. H. Shortliffe 48

5P41-RR00785-13 Details of Technical Progress

KSL 86-22

KSL 86-26

KSL 86-27

KSL 86-30

KSL 86-31

KSL 86-32

KSL 86-34

KSL 86-35

KSL 86-41

Eric Schoen; The CAOS System, March 1986. To appear in Proceedings of
DARPA Workshop on Expert Systems Technology Base, Asilomar, April
1986. 70 pages

(Working Paper) C.P. Langlotz, E.H. Shortliffe and L.M. Fagan; Using
Decision Theory to Justify Heuristics, March 1986. Accepted for
publication in: MI-86 15 pages

(Working Paper) William J. Clancey; The Science and Engineering of
Qualitative Models, March 1986. Submitted for publication to: AAA1-86,
Science Track: Applications, Philosophical and Scientific Foundations.
20 pages

(Working Paper) David C. Wilkins & Bruce G. Buchanan: On Optimizing
Rule Sets When Reasoning Under Uncertainty, April 1986. Submitted for
publication to: AAAI-86. 14 pages

Nelleke Aiello; User-Directed Control of Parallelism: The CAGE System,
April 1986. To appear in Proceedings of DARPA Workshop on Expert
Systems Technology Base, Asilomar, April 1986. 12 pages

(Working Paper) Peter D. Karp & David C. Wilkins; An Analysis of the
Deep/Shallow Distinction for Expert Systems, April 1986. 18 pages

(Working Paper) William J. Clancey, Mark Richer, David C. Wilkins, Steve
Barnhouse, Curt Kapsner, David Leserman, John Macias, Arif Merchant
and Naomi Rodolitz; Guidon-Debug: The student as knowledge engineer,
April 1986. 17 pages

(Working Paper) Michael G. Walker; How Feasible is Automated Discovery?
April 1986. Submitted for publication to: IEEE Expert. 24 pages

H. Penny Nii; CAGE and POLIGON: Two Frameworks for Blackboard-
based Concurrent Problem Solving, April 1986. To appear in Proceedings
of DARPA Workshop on Expert Systems Technology Base, Asilomar, April
1986. 9 pages

Funding Support

We are pursuing a broad core research program on basic AI research issues with support
from not only SUMEX but also DARPA, NASA, NSF, and ONR. SUMEX provides
some salary support for staff and students involved in core research and invaluable
computing support for most of these efforts. Additional salary support comes from the
sources listed below.

Boeing Computing Service Company
Project Title: Research on Representation Systems
Principal Investigators: Michael Genesereth
Award Amount: $75,000
Period Covered: 2/1/84-l/31/86

Agency: Boeing Computing Services Company
Project Title: Research on Blackboard Problem-Solving Systems
Principal Investigators: Edward A. Feigenbaum and Bruce G. Buchanan
Amount: $225,000
Period Covered: 2/l/85 -. 3/31/86

Agency: Defense Advanced Research Projects Agency; N00039-83-C-0136

49 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-13

Project Title: Heuristic Programming Project
Principal Investigators: Edward A. Feigenbaum and Bruce G. Buchanan
Amount: $3,354,493
Period Covered: 10/l/82 - 9/30/85 (Note: New three-year contract in
negotiation.)

Agency: Defense Advanced Research Projects Agency; MDA903-83-C-0188
Project Title: Research Computing Equipment Modernization
Principal Investigator: Edward A. Feigen baum
Amount: $2,565,000
Period Covered: 6/l/83 - 5/31/86

Agency: Defense Advanced Research Projects Agency; F30602-85-C-0012
Project Title: Expert Systems on Multiprocessor Architecture
Principal Investigator: Edward A. Feigenbaum
Award Amount: $1,873,511
Period Covered: 3/14/85 - 3/13/87

Agency: Lawrence Livermore
Project Title: Research on Intelligent Budget Planning and
Resource Management Systems
Principal Investigator: Bruce G. Buchanan
Award Amount: 124,905
Period Covered: 12/14/84 - 9/30/86

Agency: Josiah Macy, Jr. Foundation
Project Title: A Family of Intelligent Tutoring Programs for
Medical Diagnosis
Principal Investigator: Bruce. G. Buchanan
Award Amount: $503,415
Period Covered: 3/l/85 - 2/29/88

Agency: Martin-Marietta Corporation
Project Title: Intelligent Task Automation
Principal Investigator: Michael Genesereth
Period Covered: l/1/85 - 12/31/85

Agency: NASA-Ames Research Center
Project Title: Research On Knowledge Representation
Principal Investigator: Bruce G. Buchanan
Amount: $343,144
Period Covered: 10/l/83 - 12/31/87

Agency: NASA-AMES Research Center; NCC 2-220, Sl
Project Title: Research on Advanced Knowledge-based System Architectures
Principal Investigator: Edward A. Feigenbaum
Award Amount: $381,417
Period Covered: 10/l/82 - l/31/87

Agency: National Science Foundation; MCS-8310236
Project Title: Applications of AT to Molecular Biology
Principal Investigator: Edward A. Feigenbaum
Award Amount: $405,836
Period Covered: * 11/l/83 - 10/31/86

Agency: National Science Foundation

E. H. Shortliffe 50

