
Embree: Photo-Realistic 
Ray Tracing Kernels
Open source ray tracing kernels for fast photo-realistic rendering on Intel® CPUs

Who uses photo-realistic rendering?
Photo-realistic rendering is used in a 
wide range of applications. Designers 
and engineers use the technology to 
visualize virtual prototypes. This usage 
reduces time to market and development 
cost by reducing the number of physical 
prototypes required. In recent years, the 
quality of computer-generated images has 
reached a level of realism where render-
ings are indistinguishable from photo-
graphs. This made it possible to replace 
photographs by computer generated 
pictures for marketing purposes. In the 
same way, architects use rendering tech-
nology to visualize new buildings for their 
customers and they use similar methods 
to accurately model the interior lighting. 
Photo-realistic rendering is also used ex-
tensively for visual effects and animated 
feature films by the movie industry. 

Embree is not targeting the end users of 
rendering technology directly. Instead, 

ABSTRACT
Embree is a collection of high-performance ray tracing kernels, developed at Intel Labs. 
The kernels are optimized for photo-realistic rendering on the latest Intel® processors 
with support for the SSE and AVX instruction sets. In addition to the ray tracing kernels, 
Embree provides an example photo-realistic rendering engine. Embree is designed for 
Monte Carlo ray tracing algorithms, where the vast majority of rays are incoherent. The 
specific single-ray traversal kernels in Embree provide the best performance in this 
scenario and they are very easy to integrate into existing applications.

This document gives an overview of how photo-realistic rendering with Monte Carlo ray 
tracing works and how the Embree ray tracing kernels improve the performance of this 
algorithm.

the kernels were developed for integra-
tion into existing and future rendering 
applications. By using the open source 
Embree ray tracing kernels, researchers 
and developers can achieve the highest 
level of performance on Intel® CPUs. Users 
will automatically benefit when software 
developers make use of Embree in their 
products. 

How does it work? 
Photo-realistic rendering is the process 
of turning 3D models into images that are 
indistinguishable from a photograph. It 
requires the accurate simulation of light 
propagation according to the laws of phys-
ics. The best known method for solving 
this problem is Monte Carlo ray tracing, an 
algorithm that follows the paths of billions 
of light rays as they reflect off surfaces 
in a virtual scene. The two key challenges 
in Monte Carlo ray tracing are (a) carefully 
selecting a statistically representative 
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surface appearance is modeled by the 
physical properties of the material. In con-
trast to rasterization, where shaders are 
used to achieve certain visual effects, the 
materials in a photo-realistic ray tracer de-
scribe how light is scattered when striking 
a surface. This information is represented 
by a function known as a BRDF (Bidirec-
tional Reflectance Distribution Function). 
Light sources are also described by their 
physical emission properties. A very com-
mon representation is the high dynamic 
range (HDR) environment light. It models 
the lighting conditions of a real location 
in a single HDR image. This image is then 
used as a light source in the rendering 
system. Virtual objects illuminated by this 
light appear as if they were placed in the 
real location.

Embree uses triangle meshes to de-
scribe the shape of objects. Materials are 
modeled by a set of BRDF components. 
Implementations are provided for common 
materials such as metal, plastic, dielectrics, 
car paint, cloth and diffuse reflectors. 
Only basic texturing is supported. Light 
sources include point lights, triangle lights, 
directional lights and HDR lights. Both 
lights and materials are programmable and 
separated from the integration stage of 
the renderer. Though Embree’s example 
renderer implements a limited set of 

scene objects, the underlying technolo-
gies are general and can be applied to a 
broader range of scene representations.

Simulating Reality
The key concept of Monte Carlo ray 
tracing is to randomly select a large 
number of light paths for each pixel and 
average their contributions for the final 
color value. A light path connects a point 
on the image plane with a light source, 
either directly or mediated by one or more 
surfaces in the scene (Figure 2). The space 
of valid light paths is defined by the scene 
description and the laws of physics.

The Monte Carlo ray tracing algorithm 
computes the final pixel color by averag-
ing a large number of random samples. 
While the result is statistically correct 
for a large number of samples, too few 
samples results in visible noise artifacts. 
For a high quality result, hundreds or even 
thousands of light paths are required per 
pixel. In practice these paths are usually 
not chosen entirely at random. Instead, 
sophisticated algorithms have been de-
veloped to select the paths which provide 
the most information about the scene. 
The part of the rendering engine respon-
sible for choosing the paths and combining 
their results is known as the integrator, 
because the most common mathemati-

set of light paths, and (b) determining the 
intersection points of the path segments 
with the scene as quickly as possible. The 
latter, known as the visibility problem, is 
solved by the ray tracing kernels and it is 
usually the most compute intensive part 
of a rendering system.

Embree provides a Monte Carlo ray tracer 
as an example. This renderer demon-
strates how an efficient rendering system 
is designed and implemented using 
Embree’s key technologies. The renderer 
is also an excellent framework for evaluat-
ing and comparing different ray tracing 
kernels in a realistic application scenario.

Describing Reality
Monte Carlo ray tracing requires a 
highly detailed and physically-based scene 
description as input. The algorithm ap-
plies the laws of physics to simulate the 
propagation of light through the scene, 
rather than ad hoc approximations of 
visual phenomena. This type of simulation 
requires extremely detailed geometric 
models (engineering models for example 
are typically accurate to a fraction of a 
millimeter). Because ray tracing is less 
performance-sensitive to geometric com-
plexity, all surfaces can be finely tessel-
lated. In addition to high geometric detail, 
photo-realistic rendering requires that 

Figure 1. Progressive rendering of the imperial crown of Austria. A single machine with four Intel® Xeon® processors computes preview images of this 
3D model at interactive frame rates (left). The image converges to a better solution within a few seconds (middle). A perfect image (right) only takes 
about a minute to compute. Model courtesy of Martin Lubich, www.loramel.net.
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cal formulation of the problem takes the 
form of an integral. Every path consists of 
multiple segments that each corresponds 
to the path of a single virtual photon. 

There exist a large number of Monte 
Carlo ray tracing algorithms. They differ 
in how the light paths are chosen and 
what effects are efficiently supported. 
Path tracing1 is one example. It traces 
rays backward from the camera towards 
the light sources. Another example is 
stochastic progressive photon mapping2, 
where paths are traced both from the 
camera and from the light sources. The 
paths are then loosely connected at their 
end points.

Different applications required different 
rendering algorithms. This is why Embree 
only provides an example in this space. We 
have chosen the path tracing1 algorithm, 
because it is simple and it works well in 
many applications. The architecture of the 
renderer was inspired by the design of 
PBRT3.

Incoherent Rays
The performance critical component of a 
photo-realistic rendering engine is its ray 
tracing kernel. This component is respon-
sible for determining the intersections 
between the light paths and the scene’s 
surfaces.

A major challenge in achieving high perfor-
mance is that the generated rays are geo-
metrically incoherent. That means they 
do not share a common origin and they 
propagate in arbitrary directions with 
no obvious pattern. This differentiates 
Monte Carlo ray tracing from real-time 
ray tracing, where high frame rates are 
achieved by enforcing coherence for all 
rays (see Figure 3 for a comparison). The 
requirement of coherency limits the pos-
sible visual effects to hard shadows and 
simple specular reflection and refraction. 
Advanced effects such as HDR environ-
ment lighting, glossy reflections, deep 
refraction and diffuse global illumination 
cannot be handled properly. Monte Carlo 
ray tracing has no such limitations and 
can potentially simulate every visual ef-
fect modeled by classical ray optics. The 
cost of this flexibility and the resulting 
photo-realistic image quality is a vast 
increase in the number of rays required. 
Even the fastest processors today require 
several seconds or minutes to compute 
a noise-free high-resolution image of a 
complex model, and in 1984 when the 
first Monte Carlo ray tracing algorithm 
was introduced4, even the simplest images 
took many hours or even days to compute. 
Consequently, there is persistent demand 
for faster algorithms and highly optimized 
implementations. Today it is possible to 

render preview images at interactive 
frame rates on a single chip. Compute clus-
ters can even render high-quality pictures 
interactively. 

Embree is specifically optimized for high 
performance with incoherent rays. As a 
consequence, it outperforms algorithms 
designed for coherent rays, such as real-
time ray tracing, when used for the inco-
herent rays in photo-realistic rendering. 

Acceleration Structures
The core of a ray tracer is its acceleration 
structure. Imagine a scene with tens of 
millions of triangles and billions of rays 
being traced. The brute force approach of 
testing every ray against every surface el-
ement (typically triangles) for intersection 
is clearly infeasible. Instead, the triangles 
are sorted into a spatial data structure 
that guides the rays to potential intersec-
tion candidates. A popular acceleration 
structure known as a bounding volume 
hierarchy (BVH) sorts triangles into a 
hierarchy of boxes, each level contain-
ing increasingly smaller subsets of the 
scene. At each level, the set of triangles 
is split into two or more sub-sets until the 
sets are considered small enough. During 
rendering, a ray only needs to be inter-
sected with triangles that are contained in 
a box that the ray intersects. Due to the 
hierarchical nature of the data structure, 
the majority of boxes and triangles can be 
quickly discarded, reducing the work per 
ray to a few dozen ray-box intersection 
tests and a few ray-triangle intersections.

The acceleration structures are the core 
contribution of Embree. They take maxi-
mum advantage of the latest Intel® CPUs 
and they are designed for easy integra-
tion into other rendering engines. Embree 
implements a binary BVH as well as a 
four-wide multi bounding volume hierar-
chy5, both with highly optimized single ray 
traversal kernels. The parallel acceleration 
structure builders support spatial splits to 
efficiently handle scenes with problematic 
geometry such as large diagonal triangles.

Figure 2. Ray tracing simulates the propagation of light in a scene. The figure shows three possible 
light paths that connect the light source with a pixel in the image plane. The intersection points of 
the path segments with the scene are computed by the ray tracing kernel.
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Thread Parallelism
Monte Carlo ray tracing is very easy 
to parallelize with multiple execution 
threads because all light paths are mutu-
ally independent. The image plane is 
simply subdivided into a set of small tiles. 
Whenever a thread finishes rendering of 
its current tile, it picks the next one from 
the list of unfinished tiles. Scalability on 
multi-core processors and multi-socket 
servers is close to linear. On a four-socket 
server with a total of 40 physical cores, 
for example, Embree achieves 95% paral-
lel efficiency when rendering.

Data Parallelism
In addition to thread parallelism that 
maps tasks to the cores of a processor, 
there also is data parallelism that maps 
computation within a thread to the SIMD 
(Single Instruction Multiple Data) units 
of a CPU. Data parallelism is more dif-
ficult to exploit than thread parallelism. 
It works best when multiple collocated 
data items are processed by the same 
instruction stream. For real-time ray 
tracing this can be achieved by treating a 
set of similar rays as a packet and tracing 
them together through the acceleration 
structure. Because the rays are coherent, 
they are likely to visit the same boxes and 
intersect the same triangles. This results 
in excellent performance, because neither 
the memory access nor the control flow 
diverges. This scheme, however, breaks 
when the rays become incoherent. Each 
ray may travel through a different part 
of the scene and they may also want to 
execute different code sections. One ray, 
for example, might already have found 

Download Embree: http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/

its closest intersection and now wants to 
proceed to material evaluation, while an-
other ray is still searching for its hit point. 
Fortunately, there are other strategies to 
utilize data parallelism. Instead of group-
ing rays together, we can also group data 
elements of the acceleration structure 
together. Embree uses this approach. 
All rays are traced independently, which 
greatly simplifies the development of the 
renderer. 

Embree supports two acceleration struc-
tures that use the four-wide data parallel 
instructions provided by Intel® Streaming 
SIMD Extensions 4 (Intel® SSE4). The first 
is a bounding volume hierarchy with a 
branching factor of four5. It packs four 
boxes together in an SSE friendly layout 
and computes the intersection of a ray 
with all four of them in parallel. Triangles 
are treated similarly. The second accel-
eration structure is a traditional binary 
bounding volume hierarchy. It also stores 

the boxes in a special layout in memory 
and intersects a ray with the near and 
far planes of two boxes in parallel. This 
is possible with the fast shuffling opera-
tions provided by Intel® SSE4 and a simple 
arithmetic trick: min(a,b) = -max(-a,-b). This 
allows us to execute minimum and maxi-
mum computations in the same four-wide 
register by flipping some of the sign bits 
before and after the computation.

The acceleration structures are carefully 
optimized to take maximum advantage 
of the latest Intel® processors. Optimal 
instruction scheduling, latency minimiza-
tion, and cache-coherent memory access 
patterns were important considerations.

Summary

Embree provides highly optimized ray 
tracing kernels that speed photo-realistic 
rendering on Intel® CPUs by up to 2x. Intel® 
has released these kernels as open source 
under the Apache 2.0 license.

Figure 3. Coherent rays (left) are used for real-time ray tracing. They are handled very efficiently 
by packet tracing algorithms. Incoherent rays (right), are more difficult to handle, but they are re-
quired for photo-realistic rendering.
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