
Embree: Photo-Realistic
Ray Tracing Kernels
Open source ray tracing kernels for fast photo-realistic rendering on Intel® CPUs

Who uses photo-realistic rendering?
Photo-realistic rendering is used in a
wide range of applications. Designers
and engineers use the technology to
visualize virtual prototypes. This usage
reduces time to market and development
cost by reducing the number of physical
prototypes required. In recent years, the
quality of computer-generated images has
reached a level of realism where render-
ings are indistinguishable from photo-
graphs. This made it possible to replace
photographs by computer generated
pictures for marketing purposes. In the
same way, architects use rendering tech-
nology to visualize new buildings for their
customers and they use similar methods
to accurately model the interior lighting.
Photo-realistic rendering is also used ex-
tensively for visual effects and animated
feature films by the movie industry.

Embree is not targeting the end users of
rendering technology directly. Instead,

ABSTRACT
Embree is a collection of high-performance ray tracing kernels, developed at Intel Labs.
The kernels are optimized for photo-realistic rendering on the latest Intel® processors
with support for the SSE and AVX instruction sets. In addition to the ray tracing kernels,
Embree provides an example photo-realistic rendering engine. Embree is designed for
Monte Carlo ray tracing algorithms, where the vast majority of rays are incoherent. The
specific single-ray traversal kernels in Embree provide the best performance in this
scenario and they are very easy to integrate into existing applications.

This document gives an overview of how photo-realistic rendering with Monte Carlo ray
tracing works and how the Embree ray tracing kernels improve the performance of this
algorithm.

the kernels were developed for integra-
tion into existing and future rendering
applications. By using the open source
Embree ray tracing kernels, researchers
and developers can achieve the highest
level of performance on Intel® CPUs. Users
will automatically benefit when software
developers make use of Embree in their
products.

How does it work?
Photo-realistic rendering is the process
of turning 3D models into images that are
indistinguishable from a photograph. It
requires the accurate simulation of light
propagation according to the laws of phys-
ics. The best known method for solving
this problem is Monte Carlo ray tracing, an
algorithm that follows the paths of billions
of light rays as they reflect off surfaces
in a virtual scene. The two key challenges
in Monte Carlo ray tracing are (a) carefully
selecting a statistically representative

Manfred Ernst
Intel Labs

Sven Woop
Intel Labs

 “The Embree ray tracing kernels

accelerate photo-realistic

rendering in professional

applications by up to 2x”

WHITE PAPER
June 2011

surface appearance is modeled by the
physical properties of the material. In con-
trast to rasterization, where shaders are
used to achieve certain visual effects, the
materials in a photo-realistic ray tracer de-
scribe how light is scattered when striking
a surface. This information is represented
by a function known as a BRDF (Bidirec-
tional Reflectance Distribution Function).
Light sources are also described by their
physical emission properties. A very com-
mon representation is the high dynamic
range (HDR) environment light. It models
the lighting conditions of a real location
in a single HDR image. This image is then
used as a light source in the rendering
system. Virtual objects illuminated by this
light appear as if they were placed in the
real location.

Embree uses triangle meshes to de-
scribe the shape of objects. Materials are
modeled by a set of BRDF components.
Implementations are provided for common
materials such as metal, plastic, dielectrics,
car paint, cloth and diffuse reflectors.
Only basic texturing is supported. Light
sources include point lights, triangle lights,
directional lights and HDR lights. Both
lights and materials are programmable and
separated from the integration stage of
the renderer. Though Embree’s example
renderer implements a limited set of

scene objects, the underlying technolo-
gies are general and can be applied to a
broader range of scene representations.

Simulating Reality
The key concept of Monte Carlo ray
tracing is to randomly select a large
number of light paths for each pixel and
average their contributions for the final
color value. A light path connects a point
on the image plane with a light source,
either directly or mediated by one or more
surfaces in the scene (Figure 2). The space
of valid light paths is defined by the scene
description and the laws of physics.

The Monte Carlo ray tracing algorithm
computes the final pixel color by averag-
ing a large number of random samples.
While the result is statistically correct
for a large number of samples, too few
samples results in visible noise artifacts.
For a high quality result, hundreds or even
thousands of light paths are required per
pixel. In practice these paths are usually
not chosen entirely at random. Instead,
sophisticated algorithms have been de-
veloped to select the paths which provide
the most information about the scene.
The part of the rendering engine respon-
sible for choosing the paths and combining
their results is known as the integrator,
because the most common mathemati-

set of light paths, and (b) determining the
intersection points of the path segments
with the scene as quickly as possible. The
latter, known as the visibility problem, is
solved by the ray tracing kernels and it is
usually the most compute intensive part
of a rendering system.

Embree provides a Monte Carlo ray tracer
as an example. This renderer demon-
strates how an efficient rendering system
is designed and implemented using
Embree’s key technologies. The renderer
is also an excellent framework for evaluat-
ing and comparing different ray tracing
kernels in a realistic application scenario.

Describing Reality
Monte Carlo ray tracing requires a
highly detailed and physically-based scene
description as input. The algorithm ap-
plies the laws of physics to simulate the
propagation of light through the scene,
rather than ad hoc approximations of
visual phenomena. This type of simulation
requires extremely detailed geometric
models (engineering models for example
are typically accurate to a fraction of a
millimeter). Because ray tracing is less
performance-sensitive to geometric com-
plexity, all surfaces can be finely tessel-
lated. In addition to high geometric detail,
photo-realistic rendering requires that

Figure 1. Progressive rendering of the imperial crown of Austria. A single machine with four Intel® Xeon® processors computes preview images of this
3D model at interactive frame rates (left). The image converges to a better solution within a few seconds (middle). A perfect image (right) only takes
about a minute to compute. Model courtesy of Martin Lubich, www.loramel.net.

2

Embree: Photo-Realistic Ray Tracing Kernels

http://www.loramel.net

cal formulation of the problem takes the
form of an integral. Every path consists of
multiple segments that each corresponds
to the path of a single virtual photon.

There exist a large number of Monte
Carlo ray tracing algorithms. They differ
in how the light paths are chosen and
what effects are efficiently supported.
Path tracing1 is one example. It traces
rays backward from the camera towards
the light sources. Another example is
stochastic progressive photon mapping2,
where paths are traced both from the
camera and from the light sources. The
paths are then loosely connected at their
end points.

Different applications required different
rendering algorithms. This is why Embree
only provides an example in this space. We
have chosen the path tracing1 algorithm,
because it is simple and it works well in
many applications. The architecture of the
renderer was inspired by the design of
PBRT3.

Incoherent Rays
The performance critical component of a
photo-realistic rendering engine is its ray
tracing kernel. This component is respon-
sible for determining the intersections
between the light paths and the scene’s
surfaces.

A major challenge in achieving high perfor-
mance is that the generated rays are geo-
metrically incoherent. That means they
do not share a common origin and they
propagate in arbitrary directions with
no obvious pattern. This differentiates
Monte Carlo ray tracing from real-time
ray tracing, where high frame rates are
achieved by enforcing coherence for all
rays (see Figure 3 for a comparison). The
requirement of coherency limits the pos-
sible visual effects to hard shadows and
simple specular reflection and refraction.
Advanced effects such as HDR environ-
ment lighting, glossy reflections, deep
refraction and diffuse global illumination
cannot be handled properly. Monte Carlo
ray tracing has no such limitations and
can potentially simulate every visual ef-
fect modeled by classical ray optics. The
cost of this flexibility and the resulting
photo-realistic image quality is a vast
increase in the number of rays required.
Even the fastest processors today require
several seconds or minutes to compute
a noise-free high-resolution image of a
complex model, and in 1984 when the
first Monte Carlo ray tracing algorithm
was introduced4, even the simplest images
took many hours or even days to compute.
Consequently, there is persistent demand
for faster algorithms and highly optimized
implementations. Today it is possible to

render preview images at interactive
frame rates on a single chip. Compute clus-
ters can even render high-quality pictures
interactively.

Embree is specifically optimized for high
performance with incoherent rays. As a
consequence, it outperforms algorithms
designed for coherent rays, such as real-
time ray tracing, when used for the inco-
herent rays in photo-realistic rendering.

Acceleration Structures
The core of a ray tracer is its acceleration
structure. Imagine a scene with tens of
millions of triangles and billions of rays
being traced. The brute force approach of
testing every ray against every surface el-
ement (typically triangles) for intersection
is clearly infeasible. Instead, the triangles
are sorted into a spatial data structure
that guides the rays to potential intersec-
tion candidates. A popular acceleration
structure known as a bounding volume
hierarchy (BVH) sorts triangles into a
hierarchy of boxes, each level contain-
ing increasingly smaller subsets of the
scene. At each level, the set of triangles
is split into two or more sub-sets until the
sets are considered small enough. During
rendering, a ray only needs to be inter-
sected with triangles that are contained in
a box that the ray intersects. Due to the
hierarchical nature of the data structure,
the majority of boxes and triangles can be
quickly discarded, reducing the work per
ray to a few dozen ray-box intersection
tests and a few ray-triangle intersections.

The acceleration structures are the core
contribution of Embree. They take maxi-
mum advantage of the latest Intel® CPUs
and they are designed for easy integra-
tion into other rendering engines. Embree
implements a binary BVH as well as a
four-wide multi bounding volume hierar-
chy5, both with highly optimized single ray
traversal kernels. The parallel acceleration
structure builders support spatial splits to
efficiently handle scenes with problematic
geometry such as large diagonal triangles.

Figure 2. Ray tracing simulates the propagation of light in a scene. The figure shows three possible
light paths that connect the light source with a pixel in the image plane. The intersection points of
the path segments with the scene are computed by the ray tracing kernel.

3

Embree: Photo-Realistic Ray Tracing Kernels

3

Thread Parallelism
Monte Carlo ray tracing is very easy
to parallelize with multiple execution
threads because all light paths are mutu-
ally independent. The image plane is
simply subdivided into a set of small tiles.
Whenever a thread finishes rendering of
its current tile, it picks the next one from
the list of unfinished tiles. Scalability on
multi-core processors and multi-socket
servers is close to linear. On a four-socket
server with a total of 40 physical cores,
for example, Embree achieves 95% paral-
lel efficiency when rendering.

Data Parallelism
In addition to thread parallelism that
maps tasks to the cores of a processor,
there also is data parallelism that maps
computation within a thread to the SIMD
(Single Instruction Multiple Data) units
of a CPU. Data parallelism is more dif-
ficult to exploit than thread parallelism.
It works best when multiple collocated
data items are processed by the same
instruction stream. For real-time ray
tracing this can be achieved by treating a
set of similar rays as a packet and tracing
them together through the acceleration
structure. Because the rays are coherent,
they are likely to visit the same boxes and
intersect the same triangles. This results
in excellent performance, because neither
the memory access nor the control flow
diverges. This scheme, however, breaks
when the rays become incoherent. Each
ray may travel through a different part
of the scene and they may also want to
execute different code sections. One ray,
for example, might already have found

Download Embree: http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/

its closest intersection and now wants to
proceed to material evaluation, while an-
other ray is still searching for its hit point.
Fortunately, there are other strategies to
utilize data parallelism. Instead of group-
ing rays together, we can also group data
elements of the acceleration structure
together. Embree uses this approach.
All rays are traced independently, which
greatly simplifies the development of the
renderer.

Embree supports two acceleration struc-
tures that use the four-wide data parallel
instructions provided by Intel® Streaming
SIMD Extensions 4 (Intel® SSE4). The first
is a bounding volume hierarchy with a
branching factor of four5. It packs four
boxes together in an SSE friendly layout
and computes the intersection of a ray
with all four of them in parallel. Triangles
are treated similarly. The second accel-
eration structure is a traditional binary
bounding volume hierarchy. It also stores

the boxes in a special layout in memory
and intersects a ray with the near and
far planes of two boxes in parallel. This
is possible with the fast shuffling opera-
tions provided by Intel® SSE4 and a simple
arithmetic trick: min(a,b) = -max(-a,-b). This
allows us to execute minimum and maxi-
mum computations in the same four-wide
register by flipping some of the sign bits
before and after the computation.

The acceleration structures are carefully
optimized to take maximum advantage
of the latest Intel® processors. Optimal
instruction scheduling, latency minimiza-
tion, and cache-coherent memory access
patterns were important considerations.

Summary

Embree provides highly optimized ray
tracing kernels that speed photo-realistic
rendering on Intel® CPUs by up to 2x. Intel®
has released these kernels as open source
under the Apache 2.0 license.

Figure 3. Coherent rays (left) are used for real-time ray tracing. They are handled very efficiently
by packet tracing algorithms. Incoherent rays (right), are more difficult to handle, but they are re-
quired for photo-realistic rendering.

Embree: Photo-Realistic Ray Tracing Kernels

	 1	James T. Kajiya: The Rendering Equation. In Proceedings of SIGGRAPH ’86, pp. 143–150, (1986).
	 2	Toshiya Hachisuka and Henrik Wann Jensen: Stochastic Progressive Photon Mapping. In Proceedings of SIGGRAPH Asia 2009, Article 141, (2009).
	 3	Matt Pharr and Greg Humphreys: Physically Based Rendering: From Theory To Implementation. Morgan Kaufmann, 2nd revised edition, (2010).
	 4	Robert L. Cook, Thomas Porter, Loren Carpenter: Distributed Ray Tracing. In Proceedings of SIGGRAPH ’84, pp. 137–145, (1984).
	 5	Manfred Ernst and Günther Greiner: Multi Bounding Volume Hierarchies. In Proceedings of the IEEE/EG Symposium on Interactive Ray Tracing 2008, pp. 35–40, (2008).
		 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

		 Copyright © 2011 Intel Corporation. All rights reserved. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.
 *Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/

