Multithreading Houdini
Definitions

What is Houdini?

The goal of this course is to share our experiences and pitfalls in the on-going process of making Houdini
run in a multithreaded manner. While the attempt will be made to make the examples as context-agnostic
as possible, I will no doubt fall into some specialized jargon and make some assumptions about your
familiarity with the package. The following can be skipped by those already familiar with Houdini.

Houdini refers to the flagship package of Side Effects Software, http:/www.sidefx.com, which is a complete

3d animation and effects package. It is well known for its extremely procedural approach to art creation.
The driving vision of the package is to create the tools that let artists express themselves using this new
visual medium. What really separates computer generated art from other types of art is proceduralism:
computers excel at repeating rote tasks. Unfortunately, the act of instructing computers is considered a
highly technical task, and often seen as divorced from the act of creating art. Procedural art tools are an
attempt to bridge that gap, to ensure that the full power of computers can be harnessed by artists.

= |bnn.n1
I:"/ el shi kL
&,
' attribcreatel 4

:jmvl E:j]ndl

SKIN_OUT

GUIDE_GUT

[ll’ur:l
A — 4

Central to the Houdini interface is the network editor. The network consists of many nodes (also called
operators or OPs) which are wired together. Logically the data flows down this graph from the top to the
bottom. These network editors can consist of many different contexts to reflect the different types of data
that can be processed. Of particular interest to this discussion are two contexts: one for manipulating
geometry (Surface Operators, or SOPs) and one for setting up simulations (Dynamic Operators, or
DOPs).

This is a good time for a quick glossary:

OPs, Nodes: The vertices of the network graph. Each one has a type, which determines what
computation it represents. Each one also has a page of parameters (based on the type) which act as extra

http://www.google.com/url?q=http%3A%2F%2Fwww.sidefx.com&sa=D&sntz=1&usg=AFQjCNGwsRf89yQJWSYdxpWSgOR-iN8TOg

inputs to its computation.

Cook: All processing is called cooking. To cooking a node is to run the operation its type represents on
its inputs.

Parameters: Each node has an interface defined by name/value/type tuples. Each of these tuples forms
a parameter to the node. For example, a Box node may have a parameter to define the size of the box.

Its name may be “size”, type “vector”, and value “1, 1, 1”. Other packages use the term “attributes” for a
similar concept, which is a bit confusing as attributes refers to something quite different in Houdini.

Geometry: A big bag of primitives. Spheres, polygons, and NURBS can all be jumbled together, along
with arbitrary named and typed attributes on the points, primitives, or vertices thereof.

Attributes: Geometry can define extra named data that is attached to all points, vertices, or primitives.
Position, colour, normal, and texture UVs are all examples of attributes. Note that all points in a geometry
have to have the same set of attributes.

In the picture of the network each of the squares is a SOP node. Each SOP node represents a verb to act
on geometry. Each wire represents a path to pass geometry data along. The torusl node is a generator
— it will just create a polygonal torus according to parameters on the node. The attribcreatel node is a
filter — it copies the input geometry and manipulates it. In this case, it adds a user defined attribute.

What is Mantra?

In addition to Houdini, Side Effects Software also produces a renderer known as Mantra. This
production-proven renderer supports micropolygon, raytraced, and PBR approaches to solving the
rendering equation.

What is VEX?

VEX is a shading language similar to the Renderman Shading Language (RSL). It is a software
interpreted language so provides the flexibility of scripting. However, it also has an implicitly SIMD
evaluation approach that amortizes interpretation overhead.

VEX has moved well beyond just shading, however. It is used as the workhorse for simulation and
geometry processing.

Often it is compared to hardware shading languages, such as GLSL, OpenCL, CUDA, or Cg. This is a bit
misleading. If they were truly similar, multithreading VEX would be trivial. And moving it onto the GPU
would likewise be a manageable task. We will talk more about the difficulties VEX poses later.

Challenges in Multithreading Houdini

Itis Old

Houdini 1.0 was released in 1996. Some code, however is even older, dating to the original PRISMS from
which Houdini spawned. We thus have a large, mature, codebase to work with. While we have always
been tangentially aware of multithreading, we had been able to rely on increasing clock frequencies rather
than multiple cores to gain performance. While the assumptions of this period came to a halt in 2007 with
the release of the Core Duo architecture, it still leaves us with a lot of inertia.

So, what sort of holes have we dug for ourselves over the decades?

Itis Interrelated

Every part of Houdini can talk to every other part of Houdini. You can have a geometry operator that
creates curves based upon the results of a composite operator. You can have a simulation which is
triggered by an event in a different simulation. And the parameters to these operators themselves can
introspect the values of other parts of the scene — the effective network topology can thus shift depending
on the data passing through the network.

This is also not the exception, found only in esoteric examples. It is a very deep part of how problems are
solved with Houdini.

Cooking is Bottom-Up

- |bann1
I:"} s ghi [
&
i attribcreatel L

M ey

SKIN_OUT

GUIDE_OUT

[| & I[ur:l
wr

The natural way to view this network is to imagine the geometry created by forus! flowing down through
the graph. This is not, however, how it is actually computed. Instead, all computation is done on-demand.
When a request is made for the geometry of furl, the furl operator will make its own requests for the
geometry of SKIN OUT and GUIDE OUT. Each node will also cache its generated data, avoiding the
diamond dependency to trigger two evaluations of attribcreatel.

This, unfortunately, results in a sort of uncertainty principle in the network. To know what data is required
to compute an operator requires actually computing the operator!

For example, one common operation is the switch node. At run time the switch node picks one of its

inputs based on a parameter. That parameter, however, may use introspection. For example, consider this

expression:
npoints(“/obj/geol/reference”) == 0

This expression will ask the node at the path /obj/geol/reference to evaluate. Then, it will return 1 if that
node has zero points in it (ie, is empty) and O if it has some points. The result? The switch operator will
pick its first input if /obj/geol/reference has geometry and the second input if it is empty. The
dependency graph of the switch node has, through user interaction, become entwined with the evaluation
of another arbitrary node. It is not enough to say the switch depends on /obj/geo 1/reference (though it
certainly does), but the dependencies of switch depend on it as well!

Multithreading Houdini

Despite being faced with a huge code base of tightly coupled systems, the state of silicon forces our hand.
We have to multithread Houdini. This isn’t a one-time process, but a continuing effort. What I present
here is an attempt at distilling some guiding principles we’ve learned over the years.

Methodology

Incremental Changes

Continuous integration is a cornerstone of our development process. Daily working builds that pass all
regression tests are a goal throughout a release. This can seem like straightjacket when contemplating
significant reforms to the system. But we have found that a large number of small corrections over a long
time can result in significant architectural changes.

There is a wonderful feeling in making a one-line change to implement something that, at one point a few
years back, seemed to require a complete system re-write.

I don’t think there is a simple correct answer to the re-write vs re-factor question. But I will express
skepticism if the reason for the re-write is because it is believed that you cannot re-factor. You can.

Death to Globals

Static, my new favorite keyword!

Of course, we all know not to use this. But if you do have old code, you probably do have global variables
and static locals.

Finding Globals

You can try grepping your source for statics, but this will not find all of them. It will also falsely report
constant statics and static functions, both of which are safe. In Linux you can do:

nm 1ibGEO.so | c++filt | grep -i "7 [0-9%9a-F]* [bcdgs]'

This will report all the writable variables in the given library. There are still a lot of false positives:
compiler generated variables and your own legitimate statics.

nm 1ibGEO.so | c++filt | grep -i '""[0-9%9a-F]* [bcds]' | grep -v
'const::[a-zA-Z]*$' | grep -v '::ignore$' | grep -v openvdb::

| grep -v 'wvtable for' | grep -v 'typeinfo for' | grep -v 'VTT
for' | grep -v std:: dioinit | grep -v 'guard variable for'

Reasons for Statics

Before one removes something, one needs to know why it was put there. From combing over a large
number of statics I found some general reasons why they are used:

Because I Could:

float
foo(float x, float y)
{

static float a;

a =y * 2;
return a * x;

}

Seriously. I wish this was just one or two circumstances. Was the author trying to save stack space?

Fallback Results:

float

foo(float x, float y)

{
static float lastgood;

if (!validvalues(x, Vy))
return lastgood;

lastgood = x / y;
return lastgood;

void
programf()

{
float a = foo (3, 4);

float b = foo (5, 0);
}

[tended to find this pattern in code such as knot insertion. The fix is to force the caller to explicitly track
the fallback values:

float
foo(float x, float y, float &lastgood)
{
if (!validvalues (x, V))
return lastgood;
lastgood = x / y;
return lastgood;

void

programf()

{
float lastgood = 0;
float a = foo (3, 4, lastgood);
float b = foo(5, 0, lastgood);

}

A problem can arise if foo is called from significantly different parts of the program. In practice I never
found this to be a problem. I only found a single case where there wasn’t a direct coupling of the
invocations that needed the fall-back value. The rgb to hsv and hsv to rgb colour converters tried to
correctly cache the hue for de-saturated colours. The idea was that rgb _to hsv(hsv _to rgb(0.5, 0, 0))
would properly preserve the hue. However, this pattern fails even if there is no multithreading: consider if
you just broke the conversion into two passes across multiple elements!

Co-Functions:

Two different functions may want to share some state, but hide that from the interface seen by the caller.
Usually this seems to be a result of pre-reference C code and/or laziness. While this could be solved by
judicious use of thread-local storage, I recommend saving that as a last resort. It is much better if you can
fix the functions to make their interdependency explicit.

One also wants to fix it in an easy way — you shouldn’t suffer because someone else was lazy. (Of

course, sometimes a revision-control search reveals the awful truth: that someone else was you).
An easy mechanistic solution to this, and to most of the parameter problems, is to make a simple struct.

float knotspace, knotaccuracy, tolerance;

float setup(float a)
{

knotspace = a;
tolerance = 0.01;
knotaccuracy = a / tolerance;

}

float apply(float a)
{

return a * knotspace;

}

becomes:

struct ApplyParms
{

float knotspace, knotaccuracy, tolerance;

}s

float setup(float a, ApplyParms &parms)
{

parms. knotspace = a;
parms.tolerance = 0.01;
parms.knotaccuracy = a / parms.tolerance;

}

float apply(float a, ApplyParms &parms)
{

// 1 wonder why tolerance and accuracy exist?
return a * parms.knotspace;

}

It is then straightforward to build ApplyParms on the stack before the first invocation of setup and add it
to all the apply calls.

Callbacks Without void *:

The right thing to do is to change the callback to have a void * escape clause. However, this can really,
really, mess with your API forcing considerable cascading changes. Thus, sadly, all too often I’d
recommend instead just punting and converting your globals to thread local storage.

Callbacks With void *:

While a callback with a void * is no functor, it should be sufficient to let you write code without globals.
But still you may find some. The problem is that a very common pattern is to pass this into the void *.
And, then one is tempted to put any extra parameters as members of the class. This pattern seems to
work fine until tAis is constant.

static float glb parm;

static void callback (void *vdata)

{
const MyClass *data = (const MyClass *)vdata;

data->callback (glb parm) ;
}

void program(const MyClass *data, float parm)

{
glb parm = parm;

runalgorithm(callback, data);
}

Thankfully the transformation is simple: realize you don’t have to pass the class as void *! You can just
create another ad hoc struct, build it on the stack, and pass that in.

struct CallbackParms

{
float parm;
const MyClass *data;

}

static void callback(void *vdata)

{

CallbackParms *parms = (CallbackParms *)vdata;
parms—->data->callback (parms—->parm) ;

}

void program(const MyClass *data, float parm)

{

CallbackParms parms;

parms.parm = parm;
parms.data = data;

runalgorithm(callback, é&parms);

}
Returning const char *:

The history of C++ can be seen as a history of trying to get strings to work in C++. It is thus not unusual
to see:

const char *
createname (int 1id)

{
static char buf[1007];

sprintf (buf, “name 3d”, id);
return buf;

}

This is wrong for many reasons. Successive calls will change previous results, for example. But
practicality often forces your hand to leave the interface as it is. In this case, thread local storage is the
best answer.

Alloc Optimization:

A common premature optimization is for innermost functions to build their own cached allocation:

void
munge array (float *data, int len)
{

static float *temp;

static int templen;

if (!'temp || templen < len)

{
if (temp) free(temp);
temp = (float *) malloc(len * sizeof (float));
temple = len;

// Munge data using temp for temporary..

}

The first thing to identify is if this optimization is even needed. While allocation is expensive, it isn’t that

expensive! I usually found in code like this the cost of allocation was not an issue.

If it is a problem, that is what alloca can be used for. alloca allocates variable data on the stack.
Unfortunately, your stack is limited, so you will have to switch between al/loca and malloc depending on

size. The theory is that if you are allocating something substantially large, your time will be dominated by

whatever you are doing with that thing, not by the allocation call.

With Houdini we also have a UT_StackBuffer class which handles this by having its own default

buffersize array as member data. If the requested size exceeds this, it allocates, otherwise returns its own

member data.

void
munge array (float *data, int len)

UT StackBuffer<float> temp (len);

// Munge data using temp.array() for temporary..

}
Lookup Tables:

A lookup table in a function is usually static to avoid it being constructed on the stack with each call. In
this case just make it const. Note that this requires two const with strings as you have to make both the
table and the strings const.

static const char *const namelist[] = { “namel”, “name2”, 0 };

Focus on Stupidly Parallel

There are two distinct regimes that need optimization

First, is interactive performance. This occurs as an artist prototypes a shot. Evaluation times need to be
fast. Geometric complexity is kept low. Amdahl’s law comes into effect and you find yourself needing
everything parallelized before you gain significant performance.

The second is behavior at scale. This occurs when an artist scales their prototype with production data.
Usually, this follows the “The reward for good work is more work” principle. The faster you process the
data, the bigger the data set you will be given.

The time to compute a frame can be broken down into two components. The first is the cost to determine
what operations need to be done to what data. This is the cost of walking the network graph and
evaluating the parameters. The second is the cost of actually performing the operations. The first cost is
constant regardless of data size, and the second is hopefully linear in data size.

As we began to multithread Houdini, we focused on the behavior at scale. While improving interactivity is
a very worthy goal, it is also considerably more difficult. Further, at the end of the day, the shot still needs
to scale.

UT_ThreadedAlgorithm

If you look at the cause of global variables, you will notice one common motif. Laziness. Or maybe, less
pejoratively, “expedience”. It is very common for developers facing real pressures to trade off code
quality for development time. This is why the stupidly parallel should be stupidly easy to parallelize.

Fortunately, this has grown a lot easier over the years. Tools like TBB certainly make things easier:
tbb::parallel for is preferable to building your own dedicated thread pool. However, it is still a general
purpose tool. It is worth the time to build a wrapper which matches the data sets you have and the coding
style you have. For example, we have wrapped parallel for in several ways:

UTparallelFor: A generic implementation that lets you specify an explicit grain size and subscription
ratio. Has early exit code to inline the body for small tasks.

UTparallelForLightltems: A wrapper of the generic version that sets a grain size of 1024.
UTparallelForHeavyltems: Another wrapper with a grain size of 1.
UTserialFor: A single threaded version.

Having a UTserialFor construct is essential. This lets you trivially swap between threaded and
non-threaded implementations of an algorithm, very useful for quickly determining if a bug is due to
multithreading. And if it is, which algorithm is responsible.

Because we started our parallel push before TBB was released, we did build another approach for the

quick transformation of functions from serial to parallel. A common coding convention in Houdini is to use
the member functions of a class to process the data of the class. Thus, the UT Vector class that

represents arbitrarily dimensioned floating point vectors has a addScaledVec method which will, as its
name suggests, add another vector while scaling it.

The serial code, roughly, was:

class UT Vector

{
void addScaledVec (float s, const UT Vector &v);

}i

void
UT Vector::addScaledVec (float s, const UT Vector &v)
{

exint i, end;

end = length();
for (1 = 0; i < end; i++)
myVector[i] = s * v.myVector[i];

}

We were faced with scores of functions like this that we wished to multithread. To do this, we defined a
set of macros that would, given a function signature, build the appropriate functors to invoke the function.
One would just have to provide a Partial version of the function that knows how to complete the
computation for a single thread. The transformed code is:

class UT Vector

{
bool shouldMultiThread () const
{ return length() > 5000; }

THREADED METHODZ (UT Vector, shouldMultiThread(),

addScaledVvec,
float, s,
const UT Vector &, v);
void addScaledVecPartial (float s, const UT Vector &v,
const UT JobInfo &info);

}s

void
UT Vector::addScaledVecPartial (float s, const UT Vector &v,
const UT JobInfo &info)

{
exint i, end;
info.divideWork (length(), i, end);
for (; 1 < end; i++)
myVector[i] = s * v.myVector[i];

}

The macro makes two new functions, addScaledVec and addScaledVecNoThread. The latter acts like
the UTserialFor in providing a simple way to turn off threading from the caller. Being able to disable
threading when invoking is also very useful when your function is only sometimes threadsafe. If you can
determine at runtime if the threadsafe conditions are met, you can invoke the parallel version.

Note the use of the shouldMultiThread function. Any valid bit of C code can be used in the macro at
that point, but usually a data structure has a consistent break-even point making it easier just to move it to
a function.

This is a thread-based approach, not a task based approach. The addScaledVecPartial is ideally called
once for each thread and it is expected in its body to figure out the partitioning. The UT JoblInfo assists
with this by providing the number of jobs actually run and which job this invocation represents. Further, it
also provides a shared lock to be used for synchronization between the threads.

A big problem with the sort of partitioner used in this example is that there is no room for load balancing.
If one thread encounters a particularly sticky bit of computation the entire system will wait for it. To
ameliorate this, the UT JobInfo also contains an atomic integer that can be used to implement a simple
task-stealing system. When processing volumes, for example, this integer is used to control which 16”3
block each thread processes.

One advantage of this thread-based approach is that you don’t have to pass all of your algorithm state into
the tasks. Often there is common code outside of the loop — since there is an upper bound on the number
of threads invoked, you can leave this common code inside the addScaleVecPartial method. As your

data set scales, the contribution of this will remain constant and hence diminish. I have found one virtue of
this is that it makes it a lot easier to port algorithms that did not plan on being parallel. Often the interface
into the function is clean, but the number of parameters going into the for loop are considerable.

It is a dangerous trap, however, to let this go too far.

VEX

Our VEX language was one of the first things to be parallelized in Houdini. Its SIMD nature meant that
splitting across cores was — for simple code — easy. One of our strategies is thus to simply write as many
algorithms as possible in VEX rather than in C++. As an added bonus, both VEX and its node
representation VOPs are integrated directly in Houdini. Development can be done in a live session.

Patterns

Errors to Avoid

Reentrancy

Always be reentrant. Do not use non-reentrant locks. It is a question of when, not if, that someone
innocuously wraps your locked function in another locked function.

class foo

{
public:
void interfacel ()

{

UT Lock::Scope scope (ourlock);
// Do computation.

}

void interface2 ()

{

UT Lock::Scope scope (ourlock);
// Reuse interfacel
interfacel ()

}i

One could build coding rules to avoid this. But what is the dead-locker guilty of? Trying to factor code!
We want people to factor more code, not be punished for it.

If your concern about reentrant locks is performance, then do not be concerned. You already gave up on
performance when you added the lock.

Sleep

Use condition variables to sync threads. Do not just wait.

Performance Traps

Never Lock

When I received formal instruction in concurrent programming, the course consisted of solving twisted
multithreaded problems through the use of locks and semaphores. In practice, if you find yourself building
such a system, you probably have already lost.

First, and probably most importantly, it is ridiculously difficult to get right. With production code, it is also
not sufficient to make code that you can get right. You have to make code that everyone else who

touches it will also get it right. Just like “clever” algorithms that create a twisted maze of code should be
avoided, so should “clever” threading patterns.

Even if you do get the locking right, however, you face another serious problem. Performance.

When writing CPU-based multi-threaded code it is tempting to build a pristine mental model of how your
code will execute. You can imagine your six-core chip running each of your six threads in, if not
synchronicity, at least somewhat together. It does not help a lot of work on parallel algorithms was done
on dedicated hardware where this assumption isn’t unreasonable. On a desktop, however, things are
different. You have no way of knowing how many “real” CPUs you have, or how many are “hyper
threads”. You have no way of knowing if threads will stay on the same physical CPU from timeslice to
timeslice. You are not the only process requesting timeslices — the music player, the web browser
cycling a forgotten flash animation, the other copy of your application that was backgrounded waiting a
completion of its task. While it can be argued that there are ways to answer some of these questions, |
would contend that it is best not to. Instead, your application must be tolerant of this environment and
thread efficiently within it.

Of course, high level locks are essential. Never lock is a guideline for how you approach the part of your
algorithm you expect to actually scale. A heavily locked algorithm will allow you to peg your CPU monitor
to 100%, but a close inspection will show 50% of that being spent in the kernel. I color the kernel times in
my CPU monitor red, as opposed to blue for user computation, so these occurrences show up clearly.

Atomic are Slow

One way to take some locks out of your code is to replace them with atomic operations. Keep in mind,
however, this is just moving the locking effect to hardware. It certainly is faster and preferable to using
OS locks, but you should treat it as an uncached memory operation.

class FOO_ Array

{

public:
shared ptr<float *> getData() const
{ return myData; }

private:
shared ptr<float *> myData;

}i

float
sum_array (const FOO Array &foo)

{
float total = 0;

for (int i = 0; i < foo.length(); i++)
total += foo.getData() [i];
}

shared_ptr is a powerful new tool in C++. It is often used as a way to abdicate responsibility for tracking
ownership of data. The FOO_Array doesn’t have to worry if the caller destroys it after fetching it’s data
— the fetched data will still be valid. This, however, is not without a cost. Because shared ptr is
threadsafe, it needs to do some form of atomic operation to track if it is still unique or not. If we were to
convert sum_array into a threaded invocation we’ll be facing the worst-case contention for that atomic
structure as every addition is copying the shared ptr and hence changing the atomic!

Watch your Grain Size

Never fork without checking grain size. The caller should be forced to explicitly think about it.

It can be very easy to accidentally make things very slow by adding a multithreading code path. At the
time one probably is testing with a large dataset, so can miss out on how things behave with simple
datasets. This problem can show up at scale, since some times scaling up a situation involves processing a
small dataset millions of times.

The attributes on a piece of geometry are independent of each other. When duplicating a piece of
geometry, each point attribute can thus be duplicated independently. This is a straightforward place to do
a bit of multithreading: parallel for across the attributes. However, it is quite common to have a simple
object have scores of attributes. Each attribute has the data only for a dozen points, but we still pay the
huge overhead of creating and dispatching tasks to duplicate each attribute. The threshold of when to split
up this task can’t be determined by just looking at the number of attributes on the geometry, it also has to
take into account the number of points.

Practical Tips

Command Line Control

All standalone applications should have command-line control of their maximum thread usage.

We would encourage the use of —j, where j stands for jobs. This is inspired by make and provides a
consistent way for end users to create scripts to limit your thread usage.

A good selfish reason to do this is for debugging. When a troublesome file shows up, you can easily run
both with and without threading to determine the locus of the fault.

A practical reason is for speed. Multithreading is less efficient than single threading. If memory

resources permit, it is usually more efficient in terms of throughput to single thread your program. The
assumption underlying this counter-intuitive result is that there is not just one job to do. On a render farm
with thousands of frames to process it often would be faster to run six frames at once, each single
threaded, than try to balance one frame across six cores. Naturally, there are exceptions and trade-offs,

as one balances memory use, network bandwidth, and artist turn-around time. By providing a command
line thread control you make it very straightforward for users to adjust your programs behavior to what
they have found works best for their farm and their shots.

Constant Memory vs Cores

When faced with a many tasks that want to write to the same object, there are several approaches you
can take.

Lock the Writes: Each write to the structure can acquire a write lock. However, locks are slow, so this
is only viable for the most lightweight writes.

Theadsafe Write Pattern: You can arrange the task break down so no two tasks will write to the same
part of the object. For example, our UT VoxelArray is broken into 16”3 tiles. It is not thread safe for
two threads to write to the same tile, however, it is safe for them to write to different tiles. Thus, by
ensuring the tasks break up along tile boundaries, we can ensure the ensuing writes are all safe.

Copy and Merge: Each task can make its own copy of the object. It can then write to its copy safely.
A post-process can reduce the copies back into a single version.

This last process is the focus of this discussion. It commonly shows up in scatter-gather problems. A
canonical case is the stamping of points into a volume. Because accumulating points is symmetric, we can
make an empty volume for each task. That task can stamp its points into it to get a partially filled volume.
These volumes can then be composited together to produce the result.

One obvious efficiency is that we do not need a volume per task, we only need a volume for each thread.
With the thread-based parallelism of UT ThreadedAlgorithm this is straightforward — we know the
prologue of each invocation is only run once per thread, so we can allocate the volumes there. Even with
a purely task-based system this is still possible. One can make a thread-local variable to store the volume.
Each task will use this to create and fill. After completion, you can iterate over all the thread specific
values of this variable to merge and clear out the volumes.

This approach seems simple and straightforward. It also will seem to work in a lot of cases. However, it
has a large pitfall looming in front of it. What happens when we run this algorithm on a four-socket,
ten-core, machine with hyperthreading? With 80 threads active you may see an 80x peak in your memory
usage!

The solution is to ensure sparsity in your replicated data. Either what you replicate has to be constant in
your data-set size, or it has to be sparse enough to not scale with the number of cores after the data size is
factored out. For example, because of tiling, an empty volume does not take the same space as a full

volume. So if each thread were assigned a subset of tiles, and instead of only iterating over a subset of
particles for each thread, we iterated over all particles, we could ensure our number of live tiles does not
grow. Of course, this also has a significant cost of having to read all of the points through all threads —
perhaps a bucketing pass ahead of time might help. Also, if your tiled volume allows independent writes to
independent tiles, you don’t need to make the copies at all as this has been then changed into the

threadsafe write pattern.

Memory Allocation

Traditional memory allocators lock. As such, malloc and new are not things you want to see in the
innermost loops of your threaded algorithms. Of course, this is a rather general principle that applies to
non-threaded code as well, so it usually is not a problem.

But what if you really need to allocate memory? What do you do when alloca does not suffice?
Traditionally the answer was to write your own small object allocator. More recently, we’ve seen things
like tbb::scalable malloc provide ready-made solutions for highly contentious allocations. Unfortunately,
with memory allocation we are not just facing the threat of slow performance. Memory fragmentation is a
very serious problem that can easily halve your effective working set.

Thankfully there is an easy solution: use malloc and new as normal, but link against jemalloc. jemalloc
replaces your standard allocator with one that does all the proper tricks of small object lists and thread
local caches, but it does it in a way which aggressively avoids fragmentation.

Copy on Write

Ownership is Important

A greatly misunderstood feature of C++ is its lack of garbage collection. This is derided as a foolish
decision based on antiquated notions of efficiency. Memory leaks and dead pointers are said to abound in
C++ code, leading to crashing programs and inefficient software. While there is a lot of truth to these
objections, there is a silver lining to this cloud. Without a garbage collector to use as a safety-net, C++
programming idioms have developed to ensure clear ownership of objects are tracked. Techniques like
RAII solve many of the pitfalls of manual memory management without losing this key advantage.

Having a clear understanding of object ownership and lifetimes solves a lot of problems. A common
example is disk files — who should write to them and when they should be closed is straightforward in an
ownership based model. I also contend that this sort of thinking can help solve multithreading problems in
a way that minimizes locks.

This does require one to avoid Java-style ownership, where every reference to an object is an owner of
that object. In particular, the shared ptr device, while incredibly useful, should be kept to a minimum.
Consider again our simple array class:

class FOO Array

{

public:
shared ptr<float *> getData () const
{ return myData; }

private:
shared ptr<float *> myData;

}s

We saw earlier how this can result in problems with multithreading; but this is also an important conceptual
problem. Who owns myData? Why does someone who wants to inspect myData have to acquire
ownership? Usually the argument is made that the caller doesn’t know the lifetime of the FOO Array.
However — it does! It has must already hold a reference to the enclosing FOO Array or it wouldn’t be

able to invoke the getData function. It is only if it is planning keeping the returned pointer beyond the
FOO _Array’s guaranteed lifetime that it would require a shared ptr. But, in this case, we are
conceptually caching the result of the call, so having to explicitly signal this by gaining ownership is not
surprising.

class FOO_ Array

{
public:
float *getData () const
{ return myData.get(); 1}

shared ptr<float *> copyData() const
{ return myData; }

private:
shared ptr<float *> myData;

i

Here we have made this transformation explicit: the caller invokes copyData if they want to maintain the
data beyond FOO_Array’s lifetime, and getData if they merely want to inspect it locally.

Reader/Writer Locks

The most common pattern one encounters when attempting to write stupidly-parallel code is the
reader/writer problem. You have a data structure which you want to allow many threads to read from in
parallel. But you also potentially want many threads to write to it. Obviously, if you write to it while
threads are reading, you will end up reading inconsistent state. Similarly, if the structure has caches, you
may not even be able to read from it simultaneously. This creates a simple to describe, but hard to
implement, hierarchy of locks. Read locks are acquired whenever a thread wishes to read, and write
locks when they want to write. Read locks can prevent the write lock from acquiring (ensuring
information doesn’t change underneath them) and can have a different lock semantic (for example,
allowing many readers at once).

As a concrete example, consider a single frame of geometry. This geometry will contain, among other

things, a large array of point positions. We would like to be able to read these point positions from many
threads safely. But we also would like to be able to update them in a deformer, and do so in a way that
won’t cause any reader to see an inconsistent state. Most importantly, we want to do this in a lock-free
manner.

Const Correctness

A lot of this course is focused on how to get things working with old code which often has done things the
wrong way. Thus, it is a bit of a cheat to bring this up. However, in my defense, Houdini is old code and
yet it is const-correct.

Const is one of my favorite keywords in C++. It exemplifies what the language does right: allow you to
build contracts that the compiler will enforce. Our main motivation for const correctness was driven by
the belief that compilers would be able to use this information to better optimize the code. I am still unsure
if this has ever occurred, but the rewards we reaped in code maintenance easily justified the continued use
of this practice.

With single threaded code the const keyword is a contract to the caller that the invoked code is side-effect
free. This greatly simplifies understanding the code. Having the compiler enforce it is essential. While
there are const_cast, mutable, and C-casts to worry about, in practice these are remarkably rare
exceptions. Instead, most lazy/harried programmers will just opt to drop the const altogether rather than
use one of these workarounds. This has the beneficial effect that code with the const keyword can be
trusted to be const, because it usually was added in a bottom-up fashion by someone carefully performing
code-hygiene, not in a rush by someone trying to meet a deadline.

As the use of multithreading spreads through our code base, the const keyword becomes an essential tool.
Not only can it be used to imply the code is side-effect free, it can also be used to imply the code supports
many-readers. Again, care must be taken due to mutable caches or global variables, but it allows the
easy validation of large swathes of code. Further, by ensuring const structures are sent to the multiple
threads, you can have the compiler enforce that you don’t accidentally call an unsafe function.

Sole Ownership is a Writer Lock

Many readers, in the absence of writers, can be implemented without locks by ensuring all the functions
used by the readers are threadsafe. Using the const keyword, you can get the compiler to help validate
this requirement. But what happens when someone wants to write to that data?

A reader/writer model usually has a way to keep track of the active readers. This is essential to detect if
it is safe to start writing. We want to avoid that, however, since we want reads to be lock-free. Our
solution is to cheat and redefine our problem. By solving a slightly less general problem, we can have an
efficient solution that avoids any locking on the part of the readers.

When designing a multithreaded algorithm writing to a shared data structure, there are two types of
readers to worry about. The first are the reads my own algorithm will generate. I can reason about these

and create solutions for my planned read pattern. I don’t need special reader/writer locks, I instead just
need safe access patterns. The second are the reads that other algorithms running concurrently may
generate. This is the scary case that I cannot reason about or predict.

How then do we detect if there are any external readers? If we aren’t tracking individual read requests,
we can only detect if there is the possibility of external readers. For an algorithm external to us to read
from a data structure, it must have a way to point to or reference that data structure. Our concept of data
ownership now provides a solution: for someone else to be able to unexpectedly read from the structure,
someone else must have ownership of the structure. After all, if they have not acquired ownership, they
have no guarantee of the lifetime of the object, so shouldn’t be reading from it anyways!

Our write-lock problem is hence simplified. Before we can write to a potentially shared data structure, we
have to first ensure we have sole-ownership. Provided we are the only owner, we know no other system
can gain ownership — after all, we have the only reference! Provided we’ve ensured all caches properly
“own” the object, we have no fear of surprisingly increasing our ownership count because there can be no
references to our object outside of our algorithm.

So what is to be done if we want to write to an object and discover its ownership is shared? We simply
copy it. In almost all of our use cases, the share is due to a cache, in which case a copy is the right thing

to do in any case — it is unexpected for the cached version to be updated. Even if we do want to update

the shared object, however, it is still semantically correct to work on a copy. This means other threads will
see the old version until the new version is posted, but this is almost always advantageous since we have
eliminated risks of inconsistent states mid-algorithm. Further, we can always imagine that all the would-be
readers happened to stall until the algorithm was complete, so this instant posting is something the overall
system should be able to handle.

This pattern is equivalent to Copy On Write, which is often used as a way to share memory. We have
found, however, it is an effective way to manage multithreaded access to shared structures. Again, let us
look at the FOO_Array built in this fashion.

class FOO Array

{

public:
const float *readData () const
{ return myData.get(); }

float *writeData ()
{ makeUnique(); return myData.get(); }

shared ptr<float *> copyData() const
{ return myData; }

private:
void makeUnique ()

{

if (myData.unique()) return;

shared ptr<float *> copy(new float*([size];);
memcpy (copy.get (), myData.get (),

sizeof (float) *size);
myData = copy;

shared ptr<float *> myData;
i

First, note that we’ve made the readData function const correct. It returns a const float * making it
more difficult for people to accidentally write to shared data if they were given a const FOO_Array. If
we do want to write to the data inside the FOO_Array, we have to go through the non-const writeData.
It guards all access with makeUnique invocation to ensure the caller is the only owner of the underlying
data. Our claim is that after the makeUnique call we will be the only owner of the underlying data.

It is important to note that the uniqueness is not guaranteed by the code. A malicious caller can easily
stash a pointer to the FOO_Array else-thread and call copyData to violate this assumption. However, it
is guaranteed provided the ownership model is respected. This is the same sort of contract that already
exists to avoid memory leaks, and the same sort of coding practices can be used to ensure there are no
surprising behaviours.

While our ownership contract ensures there can be no surprising increases to the unigue count of

myData, it says nothing about surprising decreases. As such, after the unique call and until the
assignment to myData it is possible another thread will decide it is done with its copy of the data and leave
this as the only copy. In this case, however, the only penalty is an extra copy being made. Further, the
extra copy is something that, but for the timing of threads, may have been required anyways! As a result,
the actual unique invocation can be very weak. Since it may be invoked a lot, it is useful to make it no
stronger than a volatile.

Failure Mode of This System

Using Copy on Write to solve the reader/writer problem is not without its own pitfalls. As expected from
a system that requires a contract with the programmer, it is quite possible for the contract to be violated
and things to fail. One should thus, of course, ensure this is as transparent as possible to end users.

The main problem we found ourselves running into with this approach is when we were too liberal in
providing ownership. It is tempting with shared ptr to fall into a Java-style model of programming where
everything is owned by everyone. Not only does this result in a lot of unnecessary atomic operations, but
with copy on write it can result in writes disappearing into the ether.

For example, consider this multithreaded code:

void applyPartial (FOO Array foo, RANGE partialrange)

{
float *dst = foo.writeData():;

for (i in partialrange)
{
dst[i] *= 2;
}
}

FOO Array bar;

invoke parallel (bar, applyPartial);

Here we have treated FOO_Array as a lightweight container so have passed it by value to our threaded
tasks. This would work with the original definition of a shared ptr reference to myData, but now that we
are using copy on write the pass-by-value means that the caller will see an unchanged bar. Each of the
tasks will instead build their own copy of the array, write to that, and then delete the copy.

While that example can be solved by proper use of references, there are some more nasty situations that
can develop if some care is not taken.

void apply(float *dst, const float *src)
{
for (1 = 0; 1 < size; i++)
{
dst[i] = srcl[i/2];
}
}

void process (FOO Array &foo)

{

const float *src = foo.readDatal():;
float *dst = foo.writeDatal();

apply(dst, src);
i

This contrived example of pointer aliasing has a few problems. First, whether s¥c == dst depends on the
share count of the incoming foo reference. If foo is already unique, the readData and writeData will
report the same pointer and we will get the expected aliasing. However, if it were shared, writeData will
cause dst to have a duplicate copy, leaving us with two independent blocks of memory. This is not the
most serious problem, however. Consider if foo was shared during the invocation, but the other copy was
released after the readData and before the writeData. After the writeData completes its copy it will

free the original data as it now is unshared, leaving src pointing to freed memory.

Using copy on write to solve the reader/writer problem is not a silver bullet. It definitely does require
some additional care and code hygiene. However, these are not too much more onerous than the
requirements already posed by lacking garbage collection, so the techniques should be familiar and
accessible.

War Stories

isMainThread

Due to the single-threaded ancestry of Houdini, we use the same thread for drawing the Ul as we use for
computation. During long computations a callback is invoked to see if the operation should be interrupted.
This callback also draws to the screen to update the user of the progress.

Open GL, however, does not appreciate it if two different threads write to the same Open GL context.
When we started multithreading we started to get random crashes when one of the task threads decided
to update the screen. Our solution is to register one thread as the primary, main, thread. All calls into
drawing then can be gated with a query of UT Thread::isMainThread to verify it is the correct thread
making the call.

Task Locks

A reentrant lock is a lock that allows the same thread to acquire it multiple times. We have found,
however, that there is a further generalization of a reentrant lock.

While to the OS all of the threads in a program are equal, they are not the same semantically. One
example would be the main thread that has special permissions for writing to Open GL. Another is a pool
of worker threads working on the same task — these threads have a much tighter relationship with each
other than to other threads in the system.

One thread often idling in Houdini is the Python thread. This thread runs a Python interpreter. It is able to
query the geometry in a network. However, if the geometry is being updated by SOP cooking, it is
important that it blocks until the SOP cooking is complete. We have a lock around SOP cooking that
prevents two separate threads from triggering cooking. This works well with a main thread and a python
thread. But what happens when we have a thread pool performing the cooking?

A SOP operator can be defined in the VEX programming language. Many functions in VEX allow users
to query the geometry in the scene — an action which will trigger cooking. We can’t build this dependency
ahead of time because it is a result of arbitrary computation within the VEX code. When we do trigger
the geometry cook we will want to ensure only the worker thread that started this computation can
proceed — other worker threads should block to avoid double-processing. However, the thread that first
encounters the dependency may not be the same thread that grabbed the original SOP cooking lock! If
this happens, it will deadlock.

Our solution was to create a higher-level reentrant lock, a task lock. Whenever we assigned worker

threads to tasks they will acquire that task’s id. This id can then be used to allow the thread into a task
lock. When the python thread tries to acquire the lock, it has a different task id so is blocked. When one
of the worker threads first tries to acquire it, it can be allowed through and a second internal lock used to
ensure only a single worker thread is performing the task at once.

This worked well when we used a fixed worker-pool model for multithreading. Each job that was
threaded would be split into a fixed number of threads from a static threadpool. So, if the cooking invoked
by the VEX operation itself triggered a multithreaded code path, the effect would be single threaded
execution as all of the other worker threads would be stalled on the cook lock.

We then switched to using TBB’s task scheduler. This has the advantage of properly handling multiple
multithreaded executions as it abstracts away the handling of the thread pool. Unfortunately, it also
exposed a potential deadlock in our system.

If cooking a VEX SOP triggers the cooking of a second VEX SOP, that second VEX SOP will put all of
its tasks onto the TBB scheduler. Most of the time the scheduler is empty at this point — the standard
VEX procedure is to produce one task per worker thread, so the first invocation will have N-1 tasks
blocked and the Nth task processing the queue of N new tasks. However, what happens if the second
VEX SOP now invokes a third? The third SOP will again queue N tasks onto the scheduler. Provided
these are all processed before we return to the tasks from the second SOP, everything will work.
However, TBB is unaware of this dependency so may process one of the second SOPs tasks before the
new ones are complete. This task will then try to cook the third VEX SOP and deadlock on acquiring the
cook lock.

The right solution for this is something we can’t do in TBB. (Or maybe we can now, I’d love to be
corrected!) And that is yielding.

Yielding

Mantra, our rendering solution, is also multithreaded. But surely this is a more trivial example? Divide the
screen into buckets, make each bucket a task, and let TBB handle the load balancing for you!

This would work but for one problem: shared acceleration structures. Again, this is a delayed dependency
problem. We don’t know when we start the render which acceleration structures are needed. They are
often built on demand when a ray deigns to intersect their area of influence. Because they have
significant memory footprints, we don’t want to duplicate them per thread. Our usual answer was to just
put a lock around the creation of them.

Building these structures can be slow, however. We’d see frames freeze at a single core for minutes
before forking into full-CPU utilization. Clearly we want to multithread the generation of these structures!

Our first approach was to use TBB tasks. This, however, fails for the similar issues that the SOP/VEX
problem encounters. The thread whose bucket that first hits the acceleration structure can process the
new tasks just fine. But the other threads who run into this structure have a tough choice facing them.

They want to block and wait for the structure to build. But then we’d have at most single threaded
performance as all the other buckets would soon block on this thread and not release their computation to
the construction algorithm. Even worse, if the thread that is building the tree should happen to pick-up one
of the bucket tasks rather than its tree building task, it could find itself deadlocking.

We could cancel the bucket’s computation. That bucket could be re-enqueued with the proper
dependency. We would lose all of the computation that had been done so far, however, an unattractive
prospect.

Instead, what we’d prefer to do would be to still block on the building lock, but then yield our worker
thread back into a new thread pool owned by that building lock.

Unfortunately, we have not yet built a way to do that. Our solution is thus a bit more primitive.

Since scheduling the rendering of buckets is a rather straightforward task, we chose to take that out of the
control of TBB. We built an explicit pool of worker threads to be our main bucket-thread pool. These
threads can then invoke TBB’s task scheduler and use an additional set of threads for any such tasks.

This oversubscription is not as bad as it sounds as in the usual case the bucket threads will quickly all block
if the TBB threads are active building something.

Ray Intersect

The GU_RaylIntersect structure in Houdini is one of those gnarly old pieces of code that one love’s to
hate. Even when it doesn’t work, it doesn’t work in peculiar ways that some other code no doubt depends
on. So, when we wish to make it threadsafe, we suffer the usual painful constraints of having to retain the
original behavior.

Internally it stores a spatially partitioned tree of intersection primitives. A primitive, however, can end up
in multiple nodes of the tree. When the spatial partitioning splits a primitive, the primitive is added to both
halves. To avoid double intersecting the same primitive, each ray is given a unique serial number. Then
each primitive stores its own number tracking the serial number of the last ray that hit it. Obviously, if two
threads tried to send two different rays into this structure at the same time, chaos would ensue.

We could add thread local storage to each primitive to store a serial number per thread. Accessing this is
not cheap, however, and in the case of our 80 thread machine, its memory requirements can also add up.

Another approach is to have the caller provide an array to store the primitive serial numbers. This
requires the primitives to know their primitive number in this list. As it happens, we have a convenient
structure that stores the hit information, GU_Raylnfo which could be transparently extended to store a
serial number list.

We would fall afoul of this code, however:

GU RayIntersect inter;

for (int 1 = 0; i < 10000; i++)
{
GU RayInfo info;
inter.sendRay (info, ..);

}

Because the GU_RaylInfo used to be a light structure people may have put it in inner loops. Initializing
the serial list is O(N) in the number of primitives, unacceptable when sendRay is supposed to be O(IgN).

Our solution was to add a thread-local cached serial list to the GU_Raylntersect structure itself. The
GU_Raylnfo still has a pointer to a serial list, but it is a pointer to one owned by the GU_Raylntersect

call and just acts as a cache to both avoid hitting thread local storage and to pass the list down to the
innermost intersection routines. Unlike storing thread-local storage on the primitives, our extra memory for
the thread-local copies of the serial list is only used when we actually use multiple threads.

