
Viewport	2.0	API	Porting	Guide	for	
Locators	

Introduction	

This	document	analyzes	the	choices	for	porting	plug-in	locators	(MPxLocatorNode)	to	
Viewport	2.0	mostly	based	on	the	following	factors.	

• Portability:	For	example,	how	easy	is	it	to	port	the	plug-in	locators,	how	much	workload	
is	required,	is	it	a	long-term	solution?	

• Scalability:	For	example,	how	does	it	perform	as	the	number	of	locators	increases?	
• Compatibility/Flexibility:	For	example,	which	drawing	APIs/platforms	is	it	compatible	

with,	does	it	interact	with	other	features,	and	which	scenarios	are	suitable?	

There	are	also	a	family	of	“footPrint”	plug-ins	in	the	SDK	examples	which	demonstrate	how	
to	port	a	custom	locator	to	Viewport	2.0	using	different	solutions.	A	pointer	of	the	related	
SDK	examples	will	be	provided	for	reference	at	the	beginning	of	each	porting	choice.	

	

Use	MPxLocatorNode	legacy	fixed	draw	code	and	selection	in	Viewport	2.0	

Example:	footPrintNode.	

It	is	possible	to	reuse	legacy	viewport	drawing	and	picking	when	using	Viewport	2.0	for	plug-
in	locators.	However,	this	is	available	since	Maya	2017	and	should	only	be	considered	a	
temporary	solution	to	allow	for	an	incremental	migration	to	Viewport	2.0.	

Enabling		

To	reuse	legacy	viewport	drawing	code	implementation	when	using	Viewport	2.0,	set	the	
MAYA_ENABLE_VP2_PLUGIN_LOCATOR_LEGACY_DRAW	environment	variable	to	any	value.		

In	Maya	versions	prior	to	2017	Update	3,	the	legacy	viewport	picking	implementation	isn’t	
enabled	by	the	above	environment	variable	and	the	selection	picking	is	only	performed	on	
the	locator's	bounding	box	center.	To	re-enable	the	legacy	viewport	picking	implemention,	
set	the	MAYA_VP2_USE_VP1_SELECTION	environment	variable	to	any	value.	

Scalability	

• Optimizations	from	Viewport	2.0	are	not	supported	(for	example,	consolidation).		
• There	is	no	guarantee	of	equivalent	performance	when	compared	to:		



o Legacy	viewport	drawing		
o Other	porting	choices	for	Viewport	2.0		

Compatibility	

• You	must	run	Viewport	2.0	in	OpenGL	Core	Profile	(Compatibility)	or	OpenGL	Legacy	
mode.		
o OpenGL	Core	Profile	(Strict)	mode	is	not	supported,	as	it	does	not	allow	a	fixed	

function	pipeline	to	be	run.		
o DirectX	11	mode	is	not	supported.		

• OpenGL	state	may	not	be	set	up	in	the	same	way	as	the	legacy	viewport.	Legacy	draw	
code	should	avoid	making	assumptions	about	the	initial	state.		
o It	is	the	responsibility	of	the	legacy	draw	code	to	set	up	fixed	function	state	such	as	

lighting	and	so	forth.		
• It	is	the	responsibility	of	the	legacy	draw	code	to	ensure	that	it	does	not	corrupt	any	

OpenGL	state.		

	

Use	MUIDrawManager	

Examples:	footPrintNode,	footPrintNode_SubSceneOverride.	

The	MUIDrawManager	class	provides	a	straight	forward	way	for	API	users	to	draw	basic	UI	
elements	when	porting	plug-in	locators	to	Viewport	2.0.	The	decision	as	to	using	this	class	is	
mostly	based	on	a	choice	for	simplicity	while	flexibility	and	scalability	is	not	required.		

MUIDrawManager	is	not	designed	for	accessing	arbitrary	times	or	arbitrary	places.	Plug-ins	
must	associate	a	custom	locator	with	an	implementation	of	MPxDrawOverride/	
MPxGeometryOverride/MPxSubSceneOverride	and	override	the	addUIDrawables()	method	
on	these	classes	to	access	MUIDrawManager.	For	discussion	purpose,	it’s	better	to	treat	
MUIDrawManager	as	an	independent	porting	choice,	while	the	three	override	classes	can	
be	analyzed	based	on	cases	without	using	MUIDrawManager.	

Portability	

MUIDrawManager	avoids	the	complexity	of	using	MRenderItem.	Each	UI	drawable	uses	the	
appropriate	geometry,	shader	and	matrix	transformation	automatically	based	on	the	type.	
For	example,	text	has	an	appropriate	“text	shader”	and	2D	drawing	has	an	appropriate	“2D”	
matrix	transformation.	This	knowledge	is	hidden	from	the	user	for	simplicity.	The	pros	of	
this	approach	include:	

• Suitable	for	simple	UI,	where	simple	means	a	small	amount	of	UI,	or	a	when	a	small	
number	of	objects	are	drawing	the	UI.	

• Supports	text,	icons,	lines,	circles,	basic	2D	and	3D	primitives,	and	arbitrary	meshes.	
• Easier	to	port	legacy	draw	code	as	it	looks	more	like	fixed	function	drawing.	



• Requires	only	one	set	of	code	which	can	be	reused	across	all	supported	drawing	APIs.		

Scalability	

• UI	drawables	are	transient	render	items	in	nature,	so	they	cannot	take	advantage	of	
consolidation	or	hardware	instancing,	and	they	may	not	scale	well	due	to	the	potential	
cost	of	memory	reallocation.	

• It	is	possible	for	plug-ins	to	avoid	any	unnecessary	overhead	due	to	the	frequency	of	
calling	addUIDrawables()	and	recreating	UI	drawables.	
o A	draw	override	should	be	constructed	with	the	MPxDrawOverride	constructor	

argument	isAlwaysDirty	set	to	false	whenever	possible.	
o A	subscene	override	should	override	the	areUIDrawablesDirty()	method	to	return	

false	when	UI	drawables	doesn’t	need	to	be	updated.	
• As	noted	in	the	API	documentation	for	MUIDrawManager,	Viewport	2.0	may	batch	the	

same	type	of	UI	drawables	created	by	the	same	call	to	the	addUIDrawables()	method.	
o A	subscene	override	is	responsible	for	drawing	all	instances	if	the	associated	DAG	

object	is	instanced,	so	UI	drawables	for	all	instances	will	need	to	be	created	by	the	
same	call	to	the	addUIDrawables()	method.	This	will	allow	the	UI	drawables	to	use	
the	batching	optimization,	however,	the	trade-off	is	to	transform	each	UI	drawable	
from	its	belonging	instance’s	object	space	to	the	orginal	instance’s.	For	cases	where	
the	trade-off	can	outweigh	the	batching	optimization,	e.g.	complex	meshes,	the	
MRenderItem	interface	should	be	used.	

o To	inspect	whether	UI	drawables	are	batched	or	not,	execute	the	following	MEL	
command	and	observe	the	number	of	render	items	being	drawn.	
§ ogs	-traceRenderPipeline	true	

• Plug-ins	can	consolidate	the	geometries	and	reduce	the	number	of	UI	drawables	in	their	
code	in	order	to	avoid	the	internal	repetitive	batching	for	the	same	set	of	UI	drawables	
by	Viewport	2.0.	

Compatibility/Flexibility	

Pros:	

• Drawing	API	agnostic.	
• Locators	can	be	selected	by	default.	It	is	possible	to	make	a	custom	locator	non-

selectable	by	using	the	Selectability	argument	in	the	beginDrawable()	method.	

Cons:	

• Only	a	fixed	set	of	shading	options	and	single-textured	drawing	are	provided.	
• The	geometry	attributes	that	can	be	specified	are	fixed.	
• No	inherent	concept	of	participating	based	on	viewport	display	modes.	Requires	the	

implementation	to	track	these	modes	manually.	
• No	override	options	for	participating	in	post	effects	and	advanced	transparency	

algorithms	(as	MRenderItem	can)	in	case	they	are	required	by	plug-in	locators.	



	

Use	MPxGeometryOverride	

Examples:	footPrintNode_GeometryOverride.	

The	MPxGeometryOverride	class	is	similar	to	the	internal	classes	used	to	support	native	
DAG	objects,	like	polygonal	meshes	and	NURBS	surfaces,	in	Viewport	2.0.	By	using	this	class,	
plug-ins	take	advantage	of	all	internal	optimizations	such	as	consolidation	and	hardware	
instancing.	Since	the	MUIDrawManager	class	has	been	discussed	separately,	this	section	
analyzes	the	porting	choice	of	using	a	geometry	override	which	has	no	UI	drawables.	

Portability	

• The	implementation	operates	using	the	MRenderItem,	and	requires	only	one	set	of	code	
which	can	be	reused	across	all	supported	drawing	APIs.	

• Relatively	simple	to	work	with.	When	porting	custom	locators	that	require	a	stock	
shader,	the	workload	can	even	be	minimized	by	using	a	
footPrintNode_GeometryOverride	implementation	as	a	template	requiring	only	minimal	
changes,	such	as	updates	for	custom	geometry	data	or	a	different	stock	shader.	

• This	porting	choice	requires	some	knowledge	about	the	Viewport	2.0	API	and	its	
underlying	design	philosophy,	especially	when	porting	locators	that	require	a	custom	
shader,	or	trying	to	take	advantage	of	Viewport	2.0	performance	schemes	for	optimal	
performance.	Refer	to	Viewport	2.0	API	Porting	Guide	
(http://www.autodesk.com/developmaya).	

Scalability	

• A	well	optimized	implementation	of	MPxGeometryOverride	provides	predictably	better	
performance	over	legacy	viewport	or	other	porting	options.	Here	are	some	general	
optimization	guidelines:	
o Plug-ins	should	allow	render	items	to	use	consolidation	or	hardware	instancing	

whenever	possible.	For	example,	maintain	shader	instance	caches	to	allow	render	
items	for	various	shapes	to	share	the	same	shader	instance.	Refer	to	section	3.6	in	
Viewport	2.0	API	Porting	Guide	(http://www.autodesk.com/developmaya)	for	
details	about	how	render	items	can	be	considered	for	consolidation.	

o Plug-ins	can	merge	the	same	type	of	render	items	regarding	categorization,	display	
properties	and	shader	etc.	in	their	code	and	reduce	the	draw	overhead	in	case	
consolidation	or	hardware	instancing	cannot	be	used.	

o Render	items	can	share	vertex	buffers,	as	well	use	different	index	buffers	if	
appropriate,	to	reduce	memory	usage	and	transfer	overhead.	

• By	default,	the	Viewport	2.0	consolidation	system	uses	a	hybrid	mode	composed	of	
traditional	static	consolidation	and	multi-draw	consolidation.	
o Traditional	static	consolidation	improves	drawing	performance	for	static	shapes.	
o Multi-draw	consolidation	can	improve	drawing	performance	for	both	matrix-

animated	(non-deforming)	shapes	and	static	shapes,	as	long	as	it	is	supported.	



§ Requires	OpenGL	Core	Profile.	
§ Supported	on	most	recent	GPU	architectures	and	drivers	for	Windows	and	

Linux.	Warning	messages	display	in	output	window	when	not	supported.	
§ Not	yet	available	on	Mac	OS	X	due	to	missing	graphics	driver	support.	

• If	a	geometry	override	has	UI	drawables,	it	is	incompatible	with	multi-draw	
consolidation	(but	still	compatible	with	traditional	static	consolidation).	This	can	cause	a	
decrease	in	draw	performance	when	the	associated	locators	are	being	animated.	

• Hardware	instancing	is	the	alternative	solution	to	optimize	the	drawing	performance	for	
both	matrix-animated	and	static	objects	when	multi-draw	consolidation	is	not	supported	
on	the	desired	platforms	or	incompatible	with	a	geometry	override.	
o Requires	the	GPU	Instancing	option	to	be	turned	on	from	Hardware	Renderer	2.0	

Settings	(i.e.	the	“hardwareRenderingGlobals”	node).		
o Requires	the	associated	locator	to	be	instanced.	

• To	determine	whether	consolidation	or	hardware	instancing	kicks	in,	execute	the	
following	MEL	command	and	observe	the	number	of	render	items	being	drawn.	
o ogs	-traceRenderPipeline	true	

Compatibility/Flexibility	

• Drawing	API	agnostic.	
• Picking	is	handled	automatically,	although	it	is	possible	to	override	selection	via	the	

refineSelectionPath()	method.	
• Participation	in	viewport	display	modes,	post	effects,	and	advanced	transparency	

algorithms	can	be	specified	on	render	items.	
• Render	items	can	be	assigned	with	a	stock	shader,	a	shader	translated	from	a	Maya	

shading	group	(via	the	setShaderFromNode()	method),	or	a	custom	shader.	

	

Use	MPxSubSceneOverride	

Examples:	footPrintNode_SubSceneOverride.	

Although	the	MPxSubSceneOverride	class	is	primarily	designed	for	“scene-cache”	style	
nodes	that	manage	a	large	set	of	objects,	it	can	be	used	for	any	type	of	DAG	object	including	
locators.	You	can	use	this	class	for	a	custom	locator	that	is	instanced	with	multiple	
attributes	having	per-instance	data.	

Portability	

• The	implementation	operates	using	the	MRenderItem	interface	and	requires	only	one	
set	of	code	which	can	be	reused	across	all	supported	drawing	APIs.	

• Required	to	manage	all	render	items	to	draw	all	instances	of	the	associated	DAG	object,	
but	gains	direct	access	and	flexible	control	to	hardware	instancing.	

• Requires	explicit	update	logic.	It	is	totally	up	to	the	implementation	to	determine	
whether	updates	are	needed.	



• Relatively	more	coding	work	due	to	the	amount	of	the	control	given	to	the	
implementation	when	compared	to	a	geometry	override.	Requires	knowledge	about	
Viewport	2.0	API	and	its	underlying	design	philosophy.	This	is	especially	the	case	if	you	
want	flexible	hardware	instancing	support.	Refer	to	Viewport	2.0	API	Porting	Guide	
(http://www.autodesk.com/developmaya).	

Scalability	

• A	subscene	override	can	take	advantage	of	flexible	hardware	instancing	support	when	
the	associated	DAG	shape	is	instanced	with	multiple	attributes	having	per-instance	data.	
o It	is	possible	for	hardware	instancing	to	be	used	due	to	the	ability	to	add	extra	

streams	of	per-instance	data	using	the	setExtraInstanceData()	method.	
o In	this	case,	subscene	override	outperforms	geometry	override	since	consolidation	

and	hardware	instancing	cannot	be	used	by	a	geometry	override.		
• It	is	possible	for	render	items	of	a	subscene	override	to	take	advantage	of	“subscene	

consolidation”	by	using	the	setWantSubSceneConsolidation()	method.	
o It	is	a	simplified	version	of	traditional	static	consolidation,	which	doesn’t	take	into	

account	the	spatial	proximity	of	render	items.	As	a	result,	performance	scalability	
might	be	unstable.	

• Shader	instances	should	be	reused	whenever	possible	to	allow	hardware	instancing	or	
consolidation	to	be	used.	Plug-ins	may	maintain	shader	instance	caches	to	allow	
different	shapes	to	use	the	same	shader	instance.	

• To	inspect	whether	hardware	instancing	or	consolidation	kicks	in,	execute	the	following	
MEL	command	and	observe	the	number	of	render	items	being	drawn.	
o ogs	-traceRenderPipeline	true	

Compatibility/Flexibility	

• Drawing	API	agnostic.	
• Picking	is	handled	automatically,	while	it	is	possible	to	override	selection	via	

getSelectionPath()	or	getInstancedSelectionPath().	
• Participation	in	viewport	display	modes,	post	effects	and	advanced	transparency	

algorithms	can	be	specified	on	render	items.	
• Render	items	can	be	assigned	with	a	stock	shader,	a	shader	translated	from	a	Maya	

shading	group	(via	the	setShaderFromNode()	method),	or	a	custom	shader.	

	

Use	MPxDrawOverride	

Examples:	rawfootPrintNode.	

The	MPxDrawOverride	class	is	designed	for	accessing	low-level	drawing	APIs	which	gives	
complete	and	total	control	(and	responsibility)	for	drawing	the	associated	DAG	object.		



Portability	

• Requires	multiple	sets	of	code	if	multiple	drawing	APIs	need	to	be	supported.	
o OpenGL	Legacy	mode	and	OpenGL	Core	Profile	with	compatibility	mode	may	reuse	

the	legacy	fixed	draw	code.	
o OpenGL	Core	Profile	strict	mode	and	DirectX	11	need	new	sets	of	code	if	required.	

Scalability	

• Due	to	the	wide-open	nature	of	the	interface,	it	is	up	to	the	implementation	to	use	its	
own	performance	schemes	as	Viewport	2.0	performance	schemes	will	not	be	used,	
otherwise	equivalent	performance	cannot	be	expected	when	compared	to	a	geometry	
or	subscene	override.	

• A	draw	override	should	be	constructed	with	the	MPxDrawOverride	constructor	
argument	isAlwaysDirty	set	to	false	whenever	possible,	to	avoid	unnecessary	update.	
When	well-tuned,	it	should	outperform	MUIDrawManager	and	the	temporary	solution	
reusing	MPxLocatorNode	legacy	fixed	draw	code.	

Compatibility/Flexibility	

• A	draw	override	is	free	to	act	as	necessary	in	the	draw	callback	to	draw	the	DAG	object	
(apart	from	triggering	evaluation	of	the	Maya	dependency	graph).	
o If	the	override	needs	to	modify	the	state	(in	any	manner),	it	must	be	sure	to	restore	

that	state	before	completing	execution	to	avoid	state	corruption.		
• A	draw	override	can	participate	in	post	effects	by	overriding	excludedFromPostEffects().	

It	is	up	to	the	implementation	to	draw	correctly	for	each	effect	based	on	the	context	
information.	

• Transparency	is	supported;	however	a	draw	override	cannot	participate	in	advanced	
transparency	algorithms	when	isTransparent()	is	set	to	true.	

• The	selection	picking	can	work	only	when	camera-based	selection	is	active.	If	not	active,	
the	selection	picking	can	be	only	performed	on	the	locator's	bounding	box	center.		

	


