Proposed Bitmessage Protocol Technical Paper

Jonathan Warren
bitmessage@jonwarren.org

Revision 1
January 14, 2013

Abstract. The purpose of this paper is to help
researchers analyze and critique the Bitmessage protocol
before an implementation is completed. Comments and
suggestions are welcome.

1. Introduction

Bitmessage is a proposed P2P communications protocol used to send email-like messages to another
person or to many subscribers. Non-technical details about how the system would work are described in
another document available at: http://bitmessage.org/bitmessage.pdf

With this document and linked source code files, we aim to describe the protocol in enough detail to

allow researchers to critique its security.

2. Goals

The goal of the project is to develop a messaging protocol with the following features:

Decentralized

Trustless

Messages well-encrypted

Messages authenticated

Not require users to exchange and manage keys

Hide “non-content” data like the sender and receiver of messages from eavesdroppers. This may
be difficult to accomplish.

3. Proposed solution

To accomplish these goals, we propose that nodes of a P2P network exchange messages in the same way
that Bitcoin nodes exchange transactions: by forwarding them on a best effort basis. Just like with Bitcoin
transactions, all nodes will receive all messages. This is meant to hide the receiver of a message, as
receiving a message can be a passive process. In practice, however, receiving a message is not passive as
the receiver will usually send an acknowledgement. Below we also discuss possible methods of
countering attackers who eavesdrop on individual users’ Internet connections in order to find out if they
are the sender or receiver of a message, or are the owner of a particular identity.

Messages should be signed by the sender of a message and then encrypted for the receiver of the
message. Each node will be responsible for attempting to decrypt each message with each of their private
keys. To limit the number and size of messages flowing through the network, a proof-of-work scheme is
incorporated. A positive side-effect is that this may also limit spam.

Public keys and requests for public keys are exchanged in the same way that messages are exchanged: by
forwarding them through the network. Addresses exchanged by humans are a base58-encoded-hash of
their public keys. To send a message, a Bitmessage client requests the public key based on the hash and
waits for the public key to arrive through the network. After it does, it can use the public key to encrypt
the message bound for the recipient.

In order to scale, nodes self divide into streams. This is discussed in more detail in the other document,
http://bitmessage.org/bitmessage.pdf.

Because all nodes receive all messages, a natural extension of the protocol is to support broadcasting
messages to subscribers. Users may subscribe to an address through their user interface and any broadcast
type messages sent through the network by that address will be displayed to the user. Receiving a
broadcast is an entirely passive process.

Thus there are four types of ‘objects’ that are propagated throughout a Bitmessage stream: getpubkey,
pubkey, msg, and broadcast.

4. Interaction Between Nodes

Every message sent between nodes has this message header:

Field D it Data c -

Size escription e ommen
4 o Lint32 1 Magic value indicating messa.ge origin network, and used to seek to next

— |message when stream state is unknown
12 command | char[12] ASCI s.tring identif}.ring the packet content, MULL padded {non-MULL padding
results in packet rejected)

4 length uint32 t | Length of payload in number of bytes
4 checksum |uint32 t |First 4 bytes of sha512{payload)
? payload uchar[] |The actual data

Magic value Sent over wire as

0xE9BEB4D9 EY BE B4 D3

After connecting to a node using TCP, the initiator sends a version message that describes the version of
the protocol it is using to the other node. If the other node accepts, it sends a verack packet. The node
receiving the incoming connection then repeats the same process itself.

Client 1 Client 2

version
verack, version

verack

\—>

Connection now fully established

The version message has this format (along with the header above):

Field 5ize| Description |Data type Comments

4 version int32_t |dentifies protocol version being used by the node

B8 senices uinté4 t | bitfield of features to be enabled for this connection

8 timestamp int64 t standard UNIX timestamp in seconds

26 addr_recv net_addr |The network address of the node receiving this message
26 addr_from net_addr |The network address of the node emitting this message

B nonce uinté4 t | Random nonce used to detect connections to self.

1+ user_agent var_str User Agent (0x00 if string is 0 bytes long)

1+ stream numbers var_int_list| The stream numbers that the emitting node is interested in.

This structure uses the following var_int_list, var_str, and net_addr structures:

Variable length integer

Integer can be encoded depending on the represented value to save space. Variable length integers always precede
an array/vector of a type of data that may vary in length.

Value | Storage length Format
= (xfd 1 uintg_t
== (xfft |3 Oxfd followed by the length as uint16_t
== (x| 5 Oxfe followed by the length as uint32_t
9 0xff followed by the length as uintbd t

Variable length string

Variable length string can be stored using a variable length integer followed by the string itself.

Field Size Description Data type Comments
1+ length var_int Length of the string
7 string charf] The string itself (can be empty)

Variable length list of integers

n integers can be stored using n+1 variable length integers where the first var_int equals n.

Field Size Description Data type Comments

1+ count var_int Mumber of var_ints below
1+ var_int The first value stored

1+ var_int The second value stored...
1+ var_int etc_..

Network Address
Field Data

) Description Comments
Size type

4 time uint32 the Time

4 stream uint32 | Stream number for this node

8 senices uinté4d t same semvice(s) listed in version
IPvE address. The original client only supports IPvd and only reads the last 4
bytes to get the IPwd address. However, the IPvwd address is written into the

16 IPvE/4 char[16] Message as a 16 byte IPvd-mapped |Pv6 address &7
(12 bytes 00 00 00 00 00 00 00 00 00 00 FF FF, followed by the 4 bytes of the
IPvd address).

P port uint16_t |port number

The verack message is blank: it is just the message header above with “verack” as the command.
Now that the connection is fully established, each node should advertise this new node’s address to its
peers in an addr message:

addr
Field Size Description Data type Comments
1+ count var_int Mumber of address entries {max: 1000)
30x7 addr_list net_addr |Address of other nodes on the network.

It should also send a large addr message to the new peer listing random peers of which it is aware to help
it become a better connected node. Thus far, this protocol is almost exactly that used by Bitcoin.
At this point, each node should send an inventory (inv) message listing the objects of which it is aware.

inv
Field Size Description|Data type Comments
? count var_int Mumber of inventory entries
32x7 inventory inv_vect[] |Inventory vectors

This structure references inventory vectors. Inventory vectors are used for notifying other nodes about
objects they have or data which is being requested. Two rounds of SHA-512 are used, resulting in a 64
byte hash. Only the first 32 bytes are used; the later 32 bytes are ignored. The rationale for not using SHA-
256 is that Bitcoin uses SHA-256 throughout, including for the proof-of-work for blocks. Bitmessage
should use a different algorithm so that using Bitcoin mining hardware to do Bitmessage POWs is at least
not completely trivial. SHA-512 is used throughout Bitmessage (except for certain places within the
encryption implementation). Changing the POW algorithm to one designed to run “poorly” on GPUs and
custom hardware would be a positive change but rapidly developing GPGPU hardware makes it difficult
to judge what algorithms will be appropriate in the future.

Field Size | Description Data type Comments
32 hash char[32] Hash of the object

getdata is used in response to an inv message to retrieve the content of a specific object after filtering
known elements.
Payload (maximum payload length: 50000 entries)

getdata
Field Size|Description| Data type Comments
? count var_int Mumber of inventory entries

32x7 inventory inv_wvect[] |Inventory vectors

The peer should then send the requested object in a getpubkey, pubkey, msg, or broadcast message
depending on the type of the requested object.

New connection Existing connection
Client 1 Client 2 Client 3

addr
* addr
e

A

v

inv

<
<

»
»

msg

msg

%

Using this model, Client 1 downloads all objects stored by Client 2. We propose that each client store
objects for about two days and then delete them to reclaim disk space. If the receiver of a message is not

online to receive it during the two-day window, the sender will notice that he never received an
acknowledgement and will resend the message after waiting an exponentially increasing amount of time.

5. Sending a message
(Pseudocode is below)

Client 1 Various clients Client 8

getpubkey Each client

\7E forwards getpubkey
messages to %

every other

client. Eventually pubkey

messages make

pubkey their way to the
. recipient.

msg(with ackData)

msg(with ackData)

L e

Informal description:

For Alice to send a message to Bob, Bob must use a trusted medium to give her his address which is a
base58-encoded RIPEMD160 hash of two secp256k1 public keys, one used for signing and the other used
for encryption. Alice broadcasts out a request to get the public keys. Upon seeing the request, Bob
broadcasts out his public keys which are then stored by all nodes in case they also want to send a
message to Bob or if another node requests them. When Alice receives the public keys, she uses her
private signing key to sign a message to Bob, then uses Bob’s public encryption key to encrypt the
message. She then broadcasts the message throughout the Bitmessage stream. Each node attempts to
decrypt the message with each of their private encryption keys and also passes the message to peers. Bob
decrypts the message then checks the signature using the public signing key included in the message.
Finally, he hashes the public key in order to create the base58 address to display in the user interface. By
default, he will also send an acknowledgement which is also included in the message from Alice.

Sending a broadcast is simpler: Alice signs a message and broadcasts out her public keys, the message,
and the signature in a broadcast message. Any nodes that wish to display it may do so.

The formats of each of the four objects types are as follows:

getpubkey
Field S5ize, Description Data type Comments
8 POW nonce uinté4 t | Random nonce used for the Proof Of Wark
4 time uint32 t | The time that this message was generated and broadcast
1+ address version var_int The address® version
1+ stream number |var_int The address’ stream number
20 pub key hash |uchar(] The ripemd hash of the public key
pubkey
FI_E - Description Lzl Comments
Size type
B8 POW nonce uinté4 t |Random nonce used for the Proof Of Work
4 time uint32_t | The time that this message was generated and broadcast.”
1+ address version var_int |The address’ version
1+ stream number |var_int |The address’ stream number
4 behavior bitfeld Sint32 1 A bitfield I:.lf.nptn:nnal behaviors and features that can be expected from the
~ |node receiving the message.
&4 public signing key | uchar[] The ECC public key used for signing {uncompressed format; normally

prepended with 'x04 }

public encryption The ECC public key used for encryption (uncompressed format; normally

B4 uchar[]

key prepended with \x04 }
msg
Field Size| Description |Data type Comments
g POW nonce |uint6d t |Random nonce used for the Proof Of Work
4 time uint32_t | The time that this message was generated and broadcast
1+ streamMumber var_int The stream number of the destination address.

7 encrypted ucharf] Encrypted data. See also Unencrypted Message Diata Format

broadcast

Field Size

1+

1+

1+

B4

B4

20

1+
1+
messagelength

1+

sig_length

Description

POW nonce
time

broadcast
Version

address version

stream number
behavior bitfield

public signing
key

public encryption
key

address hash

encoding
messagelength
message

sig_length

signature

Data
type
uintbd t

uint32 t
var_int

var_int

var_int

uint32 t

ucharf]

uchar(]

ucharf]

var_int
var_int
ucharf]

var_int

uchar(]

Comments

The Proof Of Work nonce

The time that the message was broadcast
The version number of this broadcast protocol message.

The sender's address version
The senders stream number

A bitfield of optional behaviors and features that can be expected
from the node receiving the message.

The ECC public key used for signing (uncompressed format;
normally prepended with ‘w04)

The ECC public key used for encryption (uncompressed format;
normally prepended with ‘w04)

The sender's address hash. This is included so that nodes can more
cheaply detect whether this is a broadcast message for which they
are listening, although it must be verified with the public key above.

The encoding type of the message
The message length in bytes

The message

Length of the signature

The signature which covers everything from the time down through
the message.

msg messages contain encrypted data. The unencrypted data format is:

1+

1+

Data

Field Size Description
type
msg_versian wvar_int
address_version | var_int

1+ stream var_int

4 behavior bitfield | uint32 t
public signing

64 uchar]
key

64 public encryption uchar[]
key

20 destination ripe |uchar(]

1+ encoding war_int

1+ message length |var_int

message_length| message uchar(]

1+ ack_length var_int

ack_length ack_data uchar(]

1+ sig_length var_int

sig_length signature uchar(]

Pseudocode

To calculate an address:

If using a PRNG:

Comments

Message format version

Senders address version number. This 15 needed in order to
calculate the sender's address to show in the Ul, and also to allow
for forwards compatible changes to the public-key data included
below.

Sender's stream number

A bitfield of optional behaviors and features that can be expected
from the node with this pubkey included in this msg message (the
sender's pubkey).

The ECC public key used for signing (uncompressed format;
normally prepended with ‘xc04)

The ECC public key used for encryption (uncompressed format;
normally prepended with ‘w04)

The ripe hash of the public key of the receiver of the message
Message Encoding type

Message Length

The message.

Length of the acknowledgement data

The acknowledgement data to be transmitted. This takes the form
of a Bitmessage protocol message, like another msg message.
The POV therein must already be completed.

Length of the signature

The ECDSA signature of the destination ripe, encoding,
message_length, message, ack_length, and ack_data all
appended.

private_signing_key = random 32 byte string
private_encryption_key = random 32 byte string
Else if calculating an address deterministically using a passphrase:
private_signing_key = first 32 bytes of SHA512 (passphrase || “\x00”)
private_encryption_key = first 32 bytes of SHA512 (passphrase | | “\x01”)
public_signing_key = calculate public key from private_signing_key

public_encryption_key = calculate public key from private_encryption_key

hash = RIPEMD160 (SHA512 (public_signing_key | | public_encryption_key)

checksum = first four bytes of SHA512 (SHA512 (address version || stream number | | hash))
address = base58encode (address version | | stream number || hash || checksum)

To send a message:
Check that the destination address is valid by checking the checksum
Check if we already have the recipient’s public key. If we do not:
assemble a getpubkey message and do the necessary proof-of-work
for each peer to whom we are connected:
wait a random amount of time from 0 to 10 seconds
send the getpubkey message
Wait for Bob to respond with his public key. After 4 days, make the request again (then again in 8
days, then 16 days....)
After you receive Bob’s public key:
payload = time || stream number || 32 bytes of random data
complete the proof of work for this payload and attach the nonce and msg header to the
front of the payload. This payload is the acknowledgement data
store the payload in a data structure (this will later be checked by the receive_msg
function in order to detect when the acknowledgement arrives.)
Assemble together a new msg message
Sign the message with your private signing key using ECDH and attach the signature
(actual Python code below for this signing step)
Encrypt the message with the receiver’s public encryption key using ECIES (actual
Python code below for this step)
Complete the necessary proof-of-work
For each peer to whom we are connected,
wait a random amount of time between 0 and 10 seconds
send the msg

For each msg message we receive:
Check the proof-of-work. Abort if insufficient (and move on to the next message if there is one).
Check the time. Abort if more than 2.5 days in the past or three hours in the future.
Check stream number. Abort if it is not the stream associated with this connection.
For each of our peers:
Wait a random amount of time between 0 and 10 seconds
Broadcast the msg message
Check whether this is an acknowledgement bound for us by looking up the msg data in our
awaiting_ack_data data structure.
For each of our private encryption keys:
Try to decrypt the data. (Actual Python code below.) If decryption is successful:

Verify that the message version = 1. Abort if not.

Verify that the sender’s address version is one we understand. Abort if not.

Verify that the destination_ripe matches the ripe hash of our public keys. Abort if
not.

Verify the validity of the signature with the public signing key included in the
message. The signature covers the ripe hash of the receiver’s public keys,
encoding type, message_length, message, ack_length, and ackData, all
appended. Abort if signature check fails.

Store the sender’s public keys for optional later use.

If we have not received this message before, display the message.

Check that then length of the ackData is greater than 24. Abort if not.

Check that the magic bytes on the ackData message are correct. Abort if not.

Check that the encoded payload length in the ackData message matches the
actual length. Abort if not.

Add the ackData to a list of messages to process once all other messages from
this peer have been processed. We will process it by following this same
function. By default, we, of course, won’t be able to decrypt it because it is 32
bytes of random data, but users may use actual objects (msg, broadcast,
getpubkey, or pubkey messages) as ackData.

Else if the decryption is not successful:

Sleep for a calculated amount of time (0.3 to several seconds depending on the
size of the message and the speed of your computer). Thus decrypting or
failing to decrypt the message will take the same amount of time.

Algorithm to calculate the proof-of work:
nonce =0
averageProofOfWorkNonceTrialsPerByte = 320
extraBytes = 14000
trialValue = 99999999999999999999
target = 264 / ((length of the payload + extraBytes) * averageProofOfWorkNonceTrialsPerByte)
initialHash = SHA512 (payload)
while trialValue > target:
nonce +=1
trialValue = first 8 bytes of SHA512(SHA512(nonce byte string + initialHash))
interpreted as int
prepend the nonce byte string to the payload

6. Encryption Source Code

To implement ECIES and ECDH, we rely on a Python wrapper for OpenSSL.
The highest level functions are here:
https://github.com/Atheros1/pyelliptic/blob/master/pyelliptic/bitcoin.py

This requires several other files:

openssl.py
https://github.com/Atherosl/pyelliptic/blob/master/pvelliptic/openssl.py

ecc.py
https://github.com/Atheros1/pvelliptic/blob/master/pvelliptic/ecc.py

cipher.py
https://github.com/Atherosl/pyelliptic/blob/master/pvelliptic/cipher.py

hash.py
https://github.com/Atheros]/pvelliptic/blob/master/pvelliptic/hash.py

arithmetic.py
https://github.com/Atherosl/pvelliptic/blob/master/pvelliptic/arithmetic.py

7. Attackers
There are several attackers against whom we hope to defend:
e Chuck is malicious but has no abilities above normal Internet nodes.
¢ NSA may eavesdrop on Internet backbones but not individual Internet connections.
e LEve may eavesdrop on a particular Internet connection but not all individual Internet connections.
e Mallory is malicious, has the abilities of Eve, and may also modify and drop packets at-will.

Alice sends a message to Bob. Both are honest.

Concerning the first five goals of the project (decentralized, trustless, encrypted, authenticated, and
simple exchange of identity information), we contend that they all can be accomplished using the
methods above although when Mallory is the attacker, he can prevent individuals from communicating
by blocking all messages to and from the target node. Exchanging hashes of public keys guarantees that
users receive the correct public keys, and at that point the security of the system should be no different
than with other public key systems.

The last goal, hiding the sender and receiver of individual messages, is much more difficult.
8. Attacks

Eavesdropping attack

We contend that NSA, under the definition above, cannot identify the sender or receiver of a message but
can identify the rough geographic location of Alice and Bob with a reasonable probability. To find the
locations or, perhaps, the real life identities of Alice or Bob, he would need to monitor all individual
Internet connections in order to detect which node first responds to an acknowledgement. None of our
attackers have this ability although Eve may perform the attack on individual nodes that she suspects
may harbor Alice or Bob. This attack is viable.

We finally contend that Mallory is no more an able attacker than Eve except that he may block messages.
Someday, when the bitfield_features field is used, that field might need to be signed within the pubkey
message if it can be imagined that flipping bits in the field would be of any particular benefit or nuisance
to anyone.

Proposed solution

The eavesdropping attack can be thwarted if Bob, being a paranoid individual, instead of sending an
acknowledgement out through his own Internet connection, waits a random number of minutes and then
packages it up within another message and sends it to yet another user, Charlie, a public figure whom he
trusts not to be colluding with Eve. The message Bob sends to Charlie may even be a normal important
message (rather than a blank message). When Charlie broadcasts the acknowledgement, it would
simultaneously acknowledge the message both from Alice to Bob and from Bob to Charlie. If Charlie and
Bob do not personally know each other, Bob may send a blank message which is not shown in Charlie’s
user interface. Bob may also distribute his public keys or send msg or broadcast messages in this manner.
Charlie is happy to provide this service because the marginal cost of sending an acknowledgement is
small and because it gives Charlie plausible deniability for the acknowledgement messages which truly
are his which emanate from his Internet connection. This proposed solution is an attempt to accomplish
one goal (hiding message meta-data from Eve and Mallory) but comes at the cost of another
(trustlessness).

Other suggestions are welcome.

Timing attack

Naively implemented, a Bitmessage client would be vulnerable to a timing attack where Chuck sends a
series of messages to nodel and node2 in an attempt to locate Alice. Chuck sends a hundred msg
messages bound for Alice to nodel. Let us suppose that it takes a typical node one second to process an
msg message if the message is not bound for any address owned by this node but two seconds if it is as
the node must decrypt and display it. Nodel would reach and request the last msg message after 100
seconds if Alice is not at the node or 200 seconds if she is. This reveals Alice’s location.

Proposed Solution

We propose that nodes measure the length of time it takes to successfully decrypt and display messages
of various sizes and also the time it takes to unsuccessfully decrypt messages of various sizes. The
difference is the amount of time a node should sleep if it is unable to decrypt a message. Nodes can come
pre-programmed with reasonable default values and can adjust based on their own timings.

9. Extensions

Instant Messaging

Using the protocol above, an IM interface would not be functional because the proof-of-work would take
several minutes to complete for each message. We propose an extension to the above protocol where a
special operating mode is used for IM and for sending large attachments. The idea is that nodes agree to
directly connect to one-another or to a third party if they are blocked by firewalls. They then forgo the
POW requirement and are able to send instant messages or files of any size. Using this option, the last
goal of the project is abandoned: both the third party and NSA would be able to tell which two nodes are
communicating. Users would, however, be free to use some Bitmessage addresses privately- never using
the IM operating mode- and others publicly.

Other ideas on how to implement instant messaging are welcome.

10. Conclusion

We have presented our plan for how a Bitmessage protocol might work. We invite researchers to review
our chosen cryptographic implementation and review our rough specification looking for potential
problems. We are confident that users worldwide would benefit from a protocol like this and we aim to
acquire input and make changes early in the design process to help the project be as successful as it can be.

