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Probabilistic reanalysis of twentieth-century
sea-level rise
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Estimating and accounting for twentieth-century global mean sea-
level (GMSL) rise is critical to characterizing current and future
human-induced sea-level change. Several previous analyses of tide
gauge records1–6—employing different methods to accommodate the
spatial sparsity and temporal incompleteness of the data and to con-
strain the geometry of long-term sea-level change—have concluded
that GMSL rose over the twentieth century at a mean rate of 1.6 to
1.9 millimetres per year. Efforts to account for this rate by summing
estimates of individual contributions from glacier and ice-sheet mass
loss, ocean thermal expansion, and changes in land water storage fall
significantly short in the period before 19907. The failure to close
the budget of GMSL during this period has led to suggestions that
several contributions may have been systematically underestimated8.
However, the extent to which the limitations of tide gauge analyses
have affected estimates of the GMSL rate of change is unclear. Here
we revisit estimates of twentieth-century GMSL rise using probabil-
istic techniques9,10 and find a rate of GMSL rise from 1901 to 1990 of
1.2 6 0.2 millimetres per year (90% confidence interval). Based on
individual contributions tabulated in the Fifth Assessment Report7

of the Intergovernmental Panel on Climate Change, this estimate
closes the twentieth-century sea-level budget. Our analysis, which
combines tide gauge records with physics-based and model-derived
geometries of the various contributing signals, also indicates that
GMSL rose at a rate of 3.0 6 0.7 millimetres per year between 1993
and 2010, consistent with prior estimates from tide gauge records4.
The increase in rate relative to the 1901–90 trend is accordingly
larger than previously thought; this revision may affect some pro-
jections11 of future sea-level rise.

Tide gauges provide records of local sea-level changes that, in the case
of some sites, extend back to the eighteenth century12–14. However, using
the database of tide gauge records15 to estimate historical GMSL rise
(defined as the increase in ocean volume normalized by ocean area) is
challenging. Tide gauges sample the ocean sparsely and non-uniformly,
with a bias towards coastal sites and the Northern Hemisphere, and
with few sites at latitudes greater than 60u (see, for example, refs 4, 9). In
addition, tide gauge time series show significant inter-annual to decadal
variability, and they are characterized by missing data (that is, intervals
without observations at the start, middle or end of a time series). From
the perspective of estimating GMSL changes, the data are contaminated
by local and regional signals due to ongoing glacial isostatic adjustment
(GIA) associated with past ice ages16,17

, the spatially non-uniform pat-
tern of sea-level rise associated with changes in contemporary land ice
sources18–21, ocean/atmosphere dynamics22, and other local factors in-
cluding tectonics, sediment compaction, groundwater pumping and
harbour development.

Different approaches have been used to address these complexities in
efforts to estimate twentieth-century GMSL rise23. These include aver-
aging rates at sites with the longest records1,2, averaging rates deter-
mined from regional binning of records3, incorporating shorter records
into the analysis to distinguish between secular trends and decadal-
scale variability3, and using altimetry records to determine dominant

sea-level geometries and then using tide gauge records to estimate the
time-varying amplitudes of these geometries4,5. In most cases, other cri-
teria were applied to cull the tide gauge sites adopted in the analysis (for
example, excluding sites near tectonic activity or major urban centres).

Estimates of twentieth-century GMSL rise from these previous ana-
lyses range from 1.6 to 1.9 mm yr21 (refs 1–6) and define an important
enigma. Independent model- and data-based estimates of the individual
sources of GMSL, including mass flux from glaciers and ice sheets, ther-
mal expansion of oceans, and changes in land water storage, are insuf-
ficient to account for the GMSL rise estimated from tide gauge records8,
particularly before 19907. For example, a tabulation of contributions
to GMSL rise from 1901 to 1990 in the Fifth Assessment Report (AR5;
ref. 7) of the Intergovernmental Panel of Climate Change (IPCC) total
0.5 6 0.4 mm yr21 (90% confidence interval, CI) less than a recent tide
gauge derived rate of 1.5 6 0.2 mm yr21 (90% CI) estimated by Church
and White4 for the same period (the confidence range for this estimate
is taken from AR5; refs 7 and 23). Using IPCC terminology, the latter
suggests that it is ‘extremely likely’ (probability P 5 95%) that GMSL
rise from 1901 to 1990 was greater than 1.3 mm yr21, although the
bottom-up sum of contributions is ‘likely’ (P . 67%) below this level.
The above discrepancy has been attributed to underestimation of almost
all possible sources: thermal expansion, glacier mass balance, and Green-
land or Antarctic ice sheet mass balance7,8.

In this Letter, we revisit the analysis of GMSL since the start of the
twentieth century using Kalman smoothing9 (KS; see Methods). This
statistical technique naturally accommodates spatially sparse and tem-
porally incomplete sampling of a global sea-level field, provides a rigor-
ous, probabilistic framework for uncertainty propagation, and can correct
for a distribution of GIA and ocean models. We applied the approach to
analyse annual records from 622 tide gauges included in the Permanent
Service for Mean Sea Level (PSMSL) Revised Local Reference data-
base15,24 and reconstruct the global field of sea-level change for each
year from 1900 to 2010.

To examine the skill with which the KS reconstruction reproduces
the tide gauge observations, we compute the time series of residuals at
each tide gauge site and examine the distribution of the mean residual
(that is, bias) for each site (Fig. 1a). The mean of the mean residuals
across all 622 observations is 0.3 mm, with a standard deviation of
5.1 mm, indicating minimal systemic bias.

Comparing reconstructions and tide gauge observations at a selec-
tion of individual sites (Fig. 1b–f) shows generally excellent agreement,
although there are a small number of outliers. An example outlier is the
Champlain tide gauge (Fig. 1f), which has a mean residual of 52 mm.
This particular misfit (also evident at other sites in the vicinity) can be
attributed to the St Lawrence being a regulated water system where flow
is dominated by anthropogenic control rather than global-scale climate
dynamics25. The eight sites that have mean residuals greater than 63s
(15 mm) from the mean exhibit an average interannual sea-level vari-
ability (estimated as the standard deviation after detrending the tide
gauge observations) of 6130 mm, more than triple the mean inter-
annual variability of 640 mm across all sites. Although these outliers
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have large inter-annual variability, the site-specific variability is incor-
porated into the covariances computed in the probabilistic reconstruc-
tion, and the uncertainties in the estimated sea-level trends at these
sites reflect this.

The sum of the KS-estimated GMSL changes associated with the mass
balance of the Greenland and Antarctic ice sheets, the mass balance of 18
mountain glacier regions, and thermal expansion (Fig. 2, blue line and
shading; see Methods) is characterized by an average GMSL rate of
1.2 6 0.2 mm yr21 (90% CI) for 1901–90. As shown in Fig. 3, this is
significantly lower than the estimates of 1.5 6 0.2 mm yr21 from Church
and White4 (magenta line in Fig. 2) and 1.9 mm yr21 from Jevrejeva
et al.3 (red line in Fig. 2). The KS-estimated acceleration is 0.017 6
0.003 mm yr22, larger than our estimates based on the Church and White4

(0.009 6 0.002 mm yr22) and Jevrejeva et al.3 (0.011 6 0.006 mm yr22)
time series (see Methods).

Church and White4 combined stationary empirical orthogonal func-
tions (EOFs), computed from ,20 years of satellite altimetry data span-
ning latitudes up to about 660u, with amplitudes estimated from
sparse tide gauge observations. Given the relatively short duration
of the altimeter record, the EOFs may be dominated by patterns due
to interannual variability rather than the geometry associated with
long-term sea-level change26,27. Jevrejeva et al.3 used tide gauge records

to compute regional sea-level means and from these computed a global
average. Both methodologies involve spatially sparse, temporally incom-
plete sampling of the global sea-level field, which introduces a potentially
significant bias into estimates of GMSL. The KS technique differs from
these approaches by using the spatial information inherent in the ob-
servations to infer the weights associated with the individual, under-
lying contributions to the sea-level change. The method extracts global
information from the sparse field by taking advantage of the physics-
based and model-derived geometry of the contributing processes, thereby
reducing the potential for sampling bias.

To understand the origin of the differences between the KS estimate
and the higher values of refs 3 and 4, and in particular to quantify the
impact of regional binning, spatial sparsity and missing data, we per-
formed several tests.

First, we applied to the KS global sea-level reconstruction a regional
binning algorithm similar to that of Jevrejeva et al.3. In particular, we
sampled the reconstruction at the locations of the 622 tide gauge sites,
imposed sections of missing data consistent with the PSMSL data avail-
ability15, binned the tide gauges into 12 ocean regions, and averaged
across these regions to compute a GMSL curve. The resulting estimate
of the mean GMSL rate from 1901 to 1990 (Fig. 3; ‘KS PSMSL sam-
pling’), 1.6 6 0.4 mm yr21 (90% CI), is significantly closer to the esti-
mate of Jevrejeva et al.3, indicating that combined spatial sparsity and
missing data generate an upward bias in estimates of GMSL rates (Fig. 3).
Second, we performed a bootstrapping test that repeated the above algo-
rithm for tide gauge subsets ranging from 25 to 600 sites that confirmed
this result (see Methods and Extended Data Fig. 3). We also imple-
mented a test to estimate the possible bias in the estimate of GMSL rate
introduced in the EOF analysis of Church and White4 (see Methods;
Fig. 3; ‘KS EOF’); the result was consistent with the difference between
the KS and Church and White4 results in Fig. 2.
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Figure 1 | Fit of the KS-based reconstruction of sea level to the tide gauge
record. a, Histogram of mean residuals (mm) between the sea-level
reconstruction and the tide gauge observations at all 622 sites. The mean of all
mean residuals is 0.3 6 5.1 mm (61 s.d.). b–f, Time series of reconstructed
annual sea level (black lines, KS mean estimate; grey shading, 1s uncertainty) at
New York, USA (b), Fremantle, Australia (c), Zemlia Bunge, Russia (d),
Vaasa, Finland (e), and Champlain, Canada (f), together with the associated
annual mean tide gauge observations (red lines).
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Figure 2 | Time series of GMSL for the period 1900–2010. Shown are
estimates of GMSL based on KS (blue line), GPR (black line), Church and
White4 (magenta line) and Jevrejeva et al.3 (red line). Shaded regions show 61s
pointwise uncertainty. Inset, trends for 1901-90 and 1993-2010, and
accelerations, all with 90% CI. Confidence intervals for Church and
White4 are from refs 7 and 23. Confidence intervals were not available for
Jevrejeva et al.3; data in this reference ends in 2002, so the rate quoted here
for 1993–2010 is actually for 1993–2002. Since the GPR methodology outputs
decadal sea level, no trend is estimated for 1993–2010. Accelerations are
consistently estimated from the KS, GPR, and GMSL time series in refs 3 and 4
(see Methods) from 1901 to the end of each reconstruction.
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We performed several other tests to explore the impact of sparsity
and missing data on the estimates. Specifically, we applied the binning
algorithm as described above but without imposing sections of missing
data. The resulting mean GMSL rate estimate for 1901–90 was 1.0 6

0.4 mm yr21, close to the KS result (Fig. 3; ‘KS 622 sites, no missing
data’). Third, we sampled the full reconstruction at a large number of
globally distributed sites—that is, the sampling was not confined to the
tide gauge sites and no sections of missing data were imposed on the time
series—and performed the same regional binning and averaging (‘KS
global reconstruction’). The resulting rate estimate, 1.2 6 0.1 mm yr21,
was identical to the KS result (Fig. 3). This indicates that regional bin-
ning of estimates, in the absence of sparsity and missing data, does not
introduce a significant bias.

To assess the robustness of our probabilistic reanalysis, we also per-
formed a second, independent statistical analysis based on Gaussian
process regression28 (GPR), a technique that also naturally accommo-
dates data sparsity and gaps, and incorporates a suite of GIA and ocean
models (see Methods; black line in Fig. 2). The mean GMSL rate for
1901–90 estimated from the GPR analysis, 1.1 6 0.4 mm yr21, is con-
sistent with the results of the KS analysis (Fig. 3).

Previous analyses appear to have overestimated the mean GMSL rate
over the twentieth century. The KS estimate for the period 1901–90 in-
dicates that it is ‘very likely’ (probability P 5 90%) that the rate of GMSL
rise during this period was between 1.0 and 1.4 mm yr21. This estim-
ate closes the sea-level budget for 1901–90 estimated in AR5 (ref. 7)
without appealing to an underestimation of individual contributions
from ocean thermal expansion, glacier melting, or ice sheet mass bal-
ance. Moreover, it may contribute to the ultimate resolution of Munk’s
sea-level enigma28 (defined by the argument that Earth rotation mea-
surements and bounds on ocean warming are inconsistent with a rate of
sea-level rise beginning in the late nineteenth century of 1.5–2.0 mm yr21),
since it may lower the signal of twentieth century ice melting in Earth
rotation measurements.

In contrast, for the period 1993–2010—which coincides with the era
of satellite altimetry measurements of sea surface height changes29—the
KS estimate is consistent with previous results (Fig. 2). The KS estimate,
3.0 6 0.7 mm yr21 (90% CI), is essentially identical to the tide gauge
analysis of Church and White4 (2.8 6 0.5 mm yr21; ref. 23). It is also
consistent with the estimate based on TOPEX and Jason altimeter mea-
surements (3.2 6 0.4 mm yr21; ref. 29 as cited by ref. 23 for the period
1993–2010, see also ref. 7).

To assess the anomalous nature of recent sea-level change, we com-
pute 15-year rates through the KS-derived GMSL time series in Fig. 2
from 1901 to 2010. Figure 4 shows both the time series and distribution
of these 96 rates, where the 5 most recent time windows are shown in
red. The former is in qualitative agreement with a previous inference of
multi-decadal trends in acceleration during the twentieth century30.
While the rates show significant variability, the rate for the 1996–2010
time window, 3.1 mm yr21, is the largest of all computed 15-year rates.

We have revisited twentieth century GMSL rise using probabilistic
techniques that combine sea-level records with physics-based and model-
derived geometries of the contributing processes. Our estimated GMSL
trend for the period 1901–90 (1.2 6 0.2 mm yr21) is lower than pre-
vious estimates, indicating that the rate of GMSL rise during the last two
decades represents a more significant increase than previously recog-
nized. Projections of future sea-level rise based on the time series of
historical GMSL, notably semi-empirical approaches11, should accord-
ingly be revisited.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Probabilistic estimation methods. Kalman smoothing (KS) and Gaussian pro-
cess regression (GPR), both discussed in detail below, share three advantages over
the approaches taken in traditional tide gauge analyses. First, the Bayesian nature
of both approaches naturally accommodates the spatiotemporal changes in the
availability of the sea-level records (that is, sparsity and missing data). Second, the
probabilistic approaches correct for a distribution of GIA and ocean models rather
than adopting a specific model for each process, and they thus reduce a potentially
important bias in previous estimates of the GMSL change17,31. Last, as both methods
are fully probabilistic, they allow for the propagation of measurement and infer-
ential uncertainties and correlations throughout the complete analysis time period.
Despite these commonalities, the implementations of KS and GPR differ significantly.
Kalman smoother. The KS methodology is divided into four steps9, the first three
of which are repeated by employing the spatial fields of GIA and ocean dynamic
models from all possible combinations of 161 different Earth rheological models
and 6 global climate model (GCM) simulations from CMIP5 (ref. 32) (see below
for details of the rheological and climate models). First, a priori model estimates of
both local sea level and the individual mass contributions from the Greenland, West
Antarctic and East Antarctic ice sheets, as well as 18 major mountain glacier regions,
are recursively corrected by tide gauge observations as the estimates are propagated
forward through time. The local sea level is linked to the individual mass contri-
butions through the unique spatial patterns, or ‘fingerprints,’ of sea-level change
associated with rapid mass loss from land-based ice18–21. The forward step yields
an estimate of local sea level and land ice contributions at each time slice, con-
ditional on all earlier observations and a particular combination of GIA and GCM
models. Second, the procedure is run backward in time, with the initial state esti-
mate being the last estimate from the first step. The third, smoothing step optim-
ally combines the results of the first two passes based upon the uncertainties of the
respective estimates. The result is an estimate of local sea levels and land ice con-
tributions conditional upon the entire set of observations and specific pairings of
GIA and GCM models. Finally, the results from different GIA/GCM combinations
are linearly combined, weighted by their likelihood, to yield an a posteriori prob-
ability distribution for local sea levels and land ice contributions, conditional upon
the tide gauge observations.

A comprehensive discussion of our application of the KS technique to the ana-
lysis of tide gauge measurements is given in ref. 9, which also includes synthetic
tests to assess the performance of the procedure. Several subsequent refinements of
this approach are summarized below.

Reference 9 defined the state vector to include estimates of sea level at every tide
gauge site, the mass loss rates of three ice sheets, and the temporally correlated noise
in the sea-level observations. Using only tide gauge observations limits our ability to
separate estimates of sea level from estimates of the temporally correlated noise.
This led us to modify the KS approach in two ways.

First, the state vector includes only an estimate of total sea level at every tide gauge
site in addition to the desired mass loss rates. This yields the following state vector,
xk, at every time step, k:

xk~ hk Bk½ �T

where hk is a vector of sea level at the 622 tide gauge sites, and Bk is a vector con-
taining the scalar weightings of 3 ice sheets and 18 mountain glacier regions (see
below), as well as a uniform component that accounts for global mean thermal
expansion and any additional mass contributions from smaller mountain glaciers.

Second, while in ref. 9 the observation model consisted of the sum of the esti-
mated sea level, correlated noise, and white noise, here, the observation model con-
sists only of the estimated sea level and white noise at each tide gauge site. Temporal
correlations due to ocean dynamics are now modelled by the annual, spatial, CMIP5
ocean model fields (see below for a more detailed description of the CMIP5 model
fields).

Sea level is modelled as the Euler integration of the contributions from melt
sources, Bk-1y, (with y being the matrix of sea-level fingerprints associated with
rapid land-ice mass loss), the ongoing rate of sea-level change due to GIA, G, and
the rate of change of sea level due to ocean dynamics, _Sk{1, from the spatial fields
in the CMIP5 model outputs:

hk~hk{1zDt Bk{1yzGz _Sk{1
� �

zwh

where wh represents a zero-mean, white noise term associated with sea level.
The scalar weightings of the fingerprints are modelled as a random walk:

Bk~Bk{1zwB

where wB represents a zero-mean, white noise term associated with the melt con-
tributions. The forward filtering pass of the Kalman smoother follows the steps

outlined in ref. 9. A final departure from the methodology presented in ref. 9 is that
we implemented a three-pass fixed-interval smoother33 in place of a Rauch-Tung-
Stiebel two-pass smoother34.
Gaussian process regression. The GPR approach, in contrast, models sea level as
a multivariate Gaussian field defined by spatiotemporal mean and covariance func-
tions that describe the underlying processes responsible for sea-level variability.
Specifically, Gaussian process priors describing the contributions from land ice,
GIA, and ocean models are conditioned simultaneously upon the available obser-
vations to produce the conditional, posterior distribution of sea level at decadal in-
tervals throughout the twentieth century. In contrast to the KS, the GPR approach
directly estimates the intertemporal covariance of the posterior; the associated com-
putational demands require the use of decadal rather than annual means. Rather
than being based upon discrete GIA and GCM models as in the KS approach, the
GPR approach employs Gaussian process priors for the GIA and ocean dynamics
contributions that are estimated, respectively, from the 161 GIA model predictions
and 6 GCM outputs (see below). The distribution describing each land ice mass
contribution is modelled assuming a prior spatio-temporal covariance, with the
temporal component estimated from previous, non-sea level based estimates of
land ice melt and the spatial component from the sea-level fingerprints associated
with the melt source.

We model decadal-average sea level as a spatiotemporal field:

f x,tð Þ~f GIA x,tð Þzf M x,tð Þzf LSL x,tð Þ

where fGIA, fM, and fLSL are respectively the components of sea level due to ongoing
GIA, land ice mass loss, and local effects associated with ocean dynamics, tectonics
and other non-climatic factors, each as a function of location, x, and time, t. Each
sea-level component is modelled as a Gaussian process with a prior mean function,
mi(x,t), and covariance function, Ki(x,t,x9,t9).

The total field can be partitioned into observed sites, f1, and unobserved sites, f2,
and subsequently written as a joint, multivariate distribution, such that:

f 1

f 2

� �
*N

m1

m2

� �
,

K 11 K 12

K T
12 K 22

� �� �

Observations, y, are modelled as the underlying sea-level field with additive white
noise characterized by zero mean and a covariance Sp, such that the joint distribu-
tion becomes:

y

f 2

� �
*N

m1

m2

� �
,

K 11zSp K 12

K T
12 K 22

� �� �

Using standard statistical results (see, for example, ref. 35), the posterior mean and
covariance, f2 and V2, of the unobserved field conditioned upon the observations
are:

f 2~m2zK T
12 K 11zSp
� 	{1

y

and

V 2~K 22{K T
12 K 11zSp
� 	{1

K 12

To estimate the underlying constituents of the total sea-level field, the prior mean
and covariance of the unobserved field (that is, m2, K12, K22) are set to the distri-
bution of the desired quantity alone. For example, setting m2, K12, and K22 equal to
m 2

M, K 12
M, K 22

M, returns the posterior mean and covariance of sea-level change due
to the melt contributions. Once all the underlying constituent sea-level fields are
determined, the global mean of those components can be computed and added to
estimate GMSL.
The elements of the prior covariance matrix of the melt contribution, KM, are
defined as:

KM
i,j ~

Xn

a~1

AM,L
i,j,a zAM,RQ

i,j,a


 �
BM

i,j,a


 �

where the subscripts indicate the ith row and jth column element of the ath ice sheet
or mountain glacier. The time dependence of the covariance matrix is taken to be
the sum of a linear component, AM,L, which accounts for secular changes in the melt
contributions, and a rational quadratic term, AM,RQ, that represents a smoothly-
varying function of variability:

AM,L tq,tp

� �
~k1tqtp

and
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AM,RQ tq,tp
� �

~k2 1z
Dt2

q,p

2at2
s

 !{a

Here, tq and tp represent the time at the qth and pth time step, Dtq,p represents
the time difference between these steps, and k1, k2, a, and ts are hyperparameters
that define the linear amplitude, rational quadratic amplitude, roughness, and char-
acteristic timescale of the covariance functions35. To estimate the hyperparameters
we adopt an empirical Bayesian approach where we compute the parameters that
maximize the likelihood of reconstructed time series of previous mountain glacier
estimates36 and ice sheet estimates37.

The spatial weighting of the prior covariance, BM, is computed as the outer pro-
duct of the unique fingerprint associated with melt from the corresponding land-
based ice source.
The prior spatiotemporal mean and covariance for the GIA contribution to sea-
level change, mGIA(x,t) and KGIA(x,t), respectively, are taken as the sample mean
and covariance of the 161 predictions of sea-level change described below.
The distribution of the contribution to sea-level changes from thermosteric and
ocean dynamic effects is partially modelled as the sample mean and covariance of
the CMIP5 model outputs32. However, since a small number of models are used to
compute the distribution statistics, the estimated distribution may not be repres-
entative of the parent distribution. Consequently, we augment the sample covar-
iance with a space-time separable covariance structure consisting of the product of
two Matérn functions35, C: one representing the temporal distribution and the
other representing the spatial, such that the total prior covariance describing local
sea-level change is given by:

K LSL x,tð Þ~K CMIP5 x,tð ÞzC t,n1,tð ÞC x,n2,Lð Þ
where KCMIP5 is the sample covariance of the CMIP5 model outputs, n1 and t are
the smoothness parameter and characteristic timescale of the temporal Matérn func-
tion, respectively, and n2 and L are the smoothness parameter and characteristic
length scale of the spatial Matérn function, respectively. For the exponents within
the Matérn functions we follow ref. 10 and set the exponent on the spatial com-
ponent to n2 5 5/2 (reflecting a relatively smooth, twice-differentiable field) and the
exponent on the temporal component to n1 5 3/2 (reflecting a once-differentiable
time series, in which rate is always defined but can change abruptly). As with the
melt covariance hyperparameters, we use an empirical Bayesian approach to esti-
mate the maximum-likelihood time and length scales of the Matérn functions to
be 46 years and 90 km, respectively. Note that there is some trade-off between the
Matérn exponent values and the hyperparameter characteristic scales: the selec-
tion of, say, a lower exponent (giving rise to a less smooth functional form) would
result in a longer length scale.

In addition to capturing the inaccuracies of the ocean dynamics distribution, the
Matérn functions also model local tectonic, geomorphological and other non-
climatic contributions to local sea-level change. These hyperparameters, and a white-
noise variance, are computed by finding the parameters that maximize the likelihood
of the available tide gauge observations given the complete sea-level model.
Sea-level fingerprints. Extended Data Fig. 1a and b shows global maps of sea-level
change, known as sea-level fingerprints, associated with rapid, uniform mass loss
across the Greenland Ice Sheet (GIS) and the West Antarctic Ice Sheet (WAIS),
respectively. The sea-level changes are normalized by the equivalent GMSL change.
Both fingerprints are characterized by a large amplitude sea-level fall in the region
adjacent to the melting ice sheet with a gradual rise in sea level moving away from
the ice sheet. The computation of the fingerprints is based upon a gravitationally
self-consistent sea-level theory that takes into account shoreline migration and
changes in grounded, marine-based ice cover as well as the impact on sea level of
perturbations in the Earth’s rotation axis38–40.

In addition to the GIS and WAIS, fingerprints were computed for the East Ant-
arctic Ice Sheet (EAIS) and glaciers of Alaska, the Alps, Baffin Island, the Caucasus,
Ellesmere Island, Franz Josef Land, High Mountain Asia, Altai, Iceland, Kamchatka,
the low-latitude Andes, New Zealand, Novaya Zemlya, Patagonia, Scandinavia,
Severnaya Zemlya, Svalbard, and Western Canada/US.

We also include a spatially uniform pattern to account for changes in GMSL due
to land ice sources not included in the above set of glaciers. In the Kalman
smoother, this uniform ‘fingerprint’ also captures changes in GMSL due to globally
uniform thermal expansion and terrestrial water storage variations9.
GIA models. The first step when analysing tide gauge records is to correct for sea-
level contributions due to the ongoing GIA of the Earth in response to the ice age
cycles. Predictions of GIA are dependent on the geometry and deglaciation history
of the Late Pleistocene ice sheets and the Earth’s viscoelastic structure. In this study,
we computed 160 different GIA predictions distinguished on the basis of the adopted
lower-mantle viscosity, upper-mantle viscosity, and thickness of a high-viscosity
(effectively elastic) lithosphere. Additionally, we computed a GIA prediction using

the VM2 viscosity profile41. These were combined with the ICE-5G (Ref. 41) global
ice sheet reconstruction for the last glacial cycle. A detailed description of physical
processes that contribute to the total GIA signal can be found in ref. 42.

We adopted values for the three rheological model parameters that encompass
all recent estimates of the Earth’s structure. The lower-mantle viscosity was varied
in the range (2–100) 3 1021 Pa s, upper-mantle viscosity in the range (0.3–1) 3

1021 Pa s, and lithospheric thickness in the range 72–150 km. Extended Data Fig. 2a
and b shows the mean and standard deviation of the model predictions. The largest
variance is seen in the region within the near field of the former ice sheets, includ-
ing areas of ancient ice cover and the so-called peripheral bulges.
Ocean dynamics models. We treat the thermosteric and ocean dynamic contribu-
tions to sea level using the historical experiment output from 6 global climate models
of the World Climate Research Programme’s (WCRP) Coupled Model Intercom-
parison Project phase 5 (CMIP5) data set32. Following ref. 9, the models we use are:
bcc-csm1-1 from the Beijing Climate Center, CanESM2 from Environment Canada,
the NOAA-GFDL model GFSL-ESM2M, the Institut Pierre Simone Laplace IPSL-
CM5A-LR model, MRI-CGCM3 from the Japanese Meteorological Institute, and
NorESM1-M from the Norwegian Climate Centre. For the KS methodology, we
use the zero-mean spatial field ‘zos’ that is supplied by all the models. In the GPR,
we add to ‘zos’ each model’s estimated globally averaged sea-level change due to
thermal expansion: ‘zossga’.

While the CMIP5 model outputs are provided as global ocean grids, the field
values at the specific locations of tide gauges are required, as input, to both the KS
and GPR analyses. Where the tide gauges are coincident with model grid points,
the associated value of the model output is used. Otherwise, an inverse distance
weighting interpolation scheme is used to estimate the field at the desired location.

We examined three alternative interpolation schemes to assess the sensitivity of
the KS GMSL estimate to this choice: (1) a nearest-neighbour approach, selecting
the value on the CMIP5 grid that is closest to the tide gauge site; (2) a Delaunay in-
terpolant, computing a linear interpolation between the irregularly spaced model
cells along the coastlines; and (3) a Gaussian process (or simple kriging) methodol-
ogy. For the Gaussian process interpolation, we employed a Gaussian process prior
with a mean equal to the mean of the model grid values within a 200 km radius of
the tide gauge location and a Matérn covariance function with smoothness para-
meter equal to 5/2. Since we are interested in the variability of the ocean models
immediately surrounding each tide gauge site, the length scale of the Matérn covari-
ance function was set to 1u (,110 km). Neither the nearest-neighbour approach
nor the Delaunay interpolated altered the estimate of the GMSL rate over the time
period 1901–90. The Gaussian process interpolation scheme changed the GMSL
estimate by less than 2%, significantly smaller than the estimated 60.2 mm yr21

90% CI on the estimate.
Computation of GMSL rates and accelerations. The mean and uncertainty of
GMSL rates are estimated using a generalized least squares regression of a linear
trend to the reconstructed GMSL time series. While the GPR methodology outputs
a full temporal covariance matrix, the KS methodology does not. For this purpose,
we adopt a temporal covariance matrix S with elements having the form:

Si,j~sisje
{ tj{tið Þ

t

where si and sj are the instantaneous uncertainties in GMSL at time i and j, re-
spectively, derived in the multi-model KS analysis. To estimate the decorrelation
timescale, t, we examined the annual PSMSL tide gauge data and computed the
mean temporal correlation coefficient across all tide gauges. This coefficient ap-
proaches zero after 2 years, and we set t to 3 years. Estimates of acceleration in
GMSL cited in the main text for the two probabilistic analyses are computed using
a generalized least squares fit of a quadratic through the associated GMSL time series.
Estimates of acceleration for the Church and White4 and Jevrejeva et al.3 time series
listed in Fig. 2 are based on a weighted least squares regression through the pub-
lished time series (see figure legend).
Analysis of bias introduced by using a subset of tide gauges. We used a boot-
strapping technique to assess the potential biases introduced in estimates of GMSL
rates when only a subset of tide gauge records is used. We randomly sampled our
global sea-level reconstruction based on the Kalman smoother at a specific number
of tide gauge sites in the database of 622 sites, computed the associated GMSL curve
by binning the sites into 12 regions and averaging the result, and then used this
curve to determine the rate of sea-level change over the time period 1901–90. The
time series of the sea-level reconstruction at any given tide gauge site were sampled
to match any missing data at that site in the PSMSL database. We repeated the
analysis 100 times for subsets ranging in size from 25 to 600 sites. The mean sea-
level rate we computed in this exercise and its associated uncertainty are shown in
Extended Data Fig. 3 as a function of the number of sites. The horizontal blue line
and shading is the mean rate of sea-level rise from 1901 to 1990, and its associated
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uncertainty, respectively, obtained from the KS-derived time series (1.26 0.2 mm yr21;
Figs 2, 3).

The mean sea-level rate obtained from this analysis asymptotes towards its final
value and the spread in rates decreases monotonically as the number of tide gauges
used in the analysis increases. The asymptote lies ,0.4 mm yr21 above the KS esti-
mate, which is consistent with the difference between the KS and ‘KS PSMSL sam-
pling’ rate estimates for 1901–90 shown in Fig. 3. This result suggests that the
combined effects of data sparsity and missing data introduce an upward bias into
the estimate of GMSL. This bias is reduced in the KS (and GPR) methodologies be-
cause these techniques extract global information by using the observations, together
with model-based geometries (or covariances) associated with the underlying con-
tributions, to estimate (and sum) these contributions.
Analysis of bias introduced by an EOF analysis of altimetry records. To com-
pare our results with EOF-based reconstructions of sea level4,43, we computed the
GMSL time series following the approach adopted by Church and White4, but re-
placing altimetry and tide gauge observations with our KS reconstruction. The EOFs
were computed using the KS sea-level reconstruction from 1993 to 2010, limited to
the latitudinal observation range of satellite altimetry (65uN to 65u S). As in ref. 43,
a spatially uniform EOF was added to the basis set to account for changes in mean
sea level within the altimetry data (here the KS reconstruction), while the weights
of the EOFs were computed using the first differences of the KS reconstruction at
the tide gauge locations (sampled to reflect missing data in the PSMSL database) in
order to eliminate dependence on a consistent datum. The GMSL time series was
computed using an area-weighted mean of the EOF-reconstruction. To compute
the uncertainty in our estimated GMSL, we sampled our distribution for each KS
reconstructed tide gauge 1,000 times and computed the corresponding EOF-derived
GMSL time series. We used this distribution of GMSL curves with a generalized least
squares regression to compute a trend and uncertainty. This analysis yielded a linear
trend of 1.4 6 0.4 mm yr21, demonstrating the existence of a bias since the ‘true’
underlying reconstruction has a trend of 1.2 6 0.2 mm yr21 (see Fig. 3, ‘KS EOF’).
Inverted barometer correction. The results in the manuscript were obtained using
tide gauge observations that were not corrected for the inverse barometer (IB)
effect. Previous studies (for example, refs 44 and 45) have shown that the sea-level
response to atmospheric pressure changes can be non-negligible on regional scales.

In order to investigate the potential effect that atmospheric pressure changes have
on our probabilistic estimate of GMSL, we repeated the KS analysis on the full tide
gauge data set after we corrected these records for the IB effect. Specifically, we used
the HadSLP2 global reconstructed atmospheric pressure data set46 to compute the
IB correction. We next applied the correction to the observations at the 622 tide
gauge sites and then re-ran the KS analysis. The 1901–90 GMSL rate of change asso-
ciated with this analysis is 1.2 6 0.2 mm yr21, consistent with the value cited in the
main text. We conclude that while the IB effect can impact regional sea-level his-
tories, it has a negligible effect on our probabilistic estimates of GMSL.
Optimality of the Kalman smoother. Local sea levels observed by tide gauges re-
veal significant interannual and decadal variability. This variability can lead to tem-
poral correlation in the sea-level time series that needs to be considered if one seeks
to obtain optimal estimates of the underlying GMSL contributions. In order to test
the optimality of the Kalman smoother, we investigated the properties of the inno-
vation sequence by computing the residuals between the observations and the KS
model estimate of sea level at every tide gauge site. Since every KS estimate of sea
level is accompanied by its associated uncertainty, we randomly sampled from each
sea-level distribution to obtain 100 time series of residuals for every site. Following
the optimality test described in ref. 47, we computed the mean AR(1) coefficient
across the 100 samples at each tide gauge site. An optimal Kalman smoother is
characterized by a white noise innovation sequence. In practice, this means that,
within uncertainty, the AR(1) coefficients of the innovation sequences will be close
to zero. In the exercise above, we obtained a mean AR(1) coefficient of 0.2 6 0.3
(90% confidence). This indicates that our innovation sequence is (within uncer-
tainty) white noise and that the smoother is, or is close to, optimal.
Sensitivity of GMSL estimates to limitations of the CMIP5 climate simulations.
The presence of unmodelled ocean dynamics can also affect the smoother perfor-
mance. As described above, the limitations of the CMIP5 simulations as models for
the true dynamic variability of the oceans is addressed in the GPR analysis by aug-
menting the covariance computed from the climate runs with two additional terms:
a covariance modelled with two Matérn functions, and a white noise variance.

To assess the sensitivity of the KS analysis to unmodelled ocean dynamics, we
examined its response to (1) a known synthetic ocean dynamic signal and (2) the
inclusion of the dynamic response to freshwater hosing of the North Atlantic.
We used the mean KS estimates of the ice sheet melt rates and uniform sea-level
contribution, as well as the multi-model estimate of the GIA contribution, to con-
struct synthetic sea-level observations at the 622 tide gauge sites. We then added
the dynamic sea-level change associated with one of the six CMIP5 climate models
and ran the multi-model KS using the five remaining climate models to obtain an

estimate of the GMSL rate. We repeated this analysis for each of the CMIP5 sim-
ulations. By not including the climate model used in constructing the synthetics in
the multi-model component of the KS methodology, we tested the ability of the
smoother to account for unmodelled dynamics. The 1901–90 GMSL rates deter-
mined from the complete set of 6 analyses ranged from 1.1 to 1.3 mm yr21. Five of
these analyses yielded a 90% CI of 0.2 mm yr21, while the sixth yielded a 90% CI of
0.3 mm yr21. These values are consistent with the results for the KS analysis cited
in the main text (1.2 6 0.2 mm yr21).
To assess the sensitivity of our GMSL results to ocean dynamic effects due to fresh-
water input (‘hosing’) from GIS melt, we used the results of a previous study48 to
investigate the dynamic sea-level signal arising from North Atlantic freshwater
‘hosing’ simulations. Specifically, we computed the difference between the results
of the 0.1 Sv hosing run and the control (no-hosing) simulation described in ref. 48
and scaled this difference by 0.05 to approximate a synthetic dynamic signal for a
GIS melt rate equivalent to 0.5 mm yr21 GMSL rise over the twentieth century.
After subtracting a uniform 0.5 mm yr21 from the spatial pattern, we calculated
time series of this signal at all 622 tide gauge sites, added these to the observed
record, and repeated the KS analysis. The presence of these unmodelled dynamics
has negligible effect on our estimate of GMSL. The 1901–90 rate estimated in the
above test agrees with the value presented in the manuscript (1.2 6 0.2 mm yr21).

While the above sensitivity tests indicate that the probabilistic analyses have quan-
tified, with reasonable accuracy, the impact of uncertainties in CMIP5 models of
ocean dynamic variability, improving such models is an important requirement in
any effort to further refine estimates of GMSL rates.
Kalman smoother reconstruction of sea level at sites with no observations. To
investigate how well the KS is able to estimate sea level at sites without observations,
we ran the Kalman smoother using data from 450 randomly chosen tide gauge sites
and estimated the sea level at the remaining 172 sites. Extended Data Fig. 4 shows
the GMSL time series estimated in this new analysis as well as a comparison of the
estimated and observed sea level at a representative subset of 5 of these 172 sites (the
remaining sites show similar fits). We calculate a 1901–90 GMSL rate of 1.2 6

0.2 mm yr21, consistent with the results presented in the manuscript when all 622
tide gauge sites are used in the analysis. The consistency between the estimated
and observed values at the 172 tide gauge sites also indicates that limitations of the
CMIP5 simulations in modelling ocean dynamics are not degrading the ability to
predict sea-level trends at sites without observations. More generally, the analysis
demonstrates the power of the KS method in reconstructing sea level when the
method is applied with physics-based and model-derived geometries of the under-
lying physical processes.
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Extended Data Figure 1 | Illustrative sea-level fingerprints. a, b, Normalized
sea-level changes due to rapid melting of the Greenland Ice Sheet (a) and
the West Antarctic Ice Sheet (b). The variable ‘normalized sea-level change’

on the colour scale is formally dimensionless, but may be interpreted as having
the unit of metres of sea-level change per metre of the equivalent GMSL
change associated with the melt event.
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Extended Data Figure 2 | The present-day rate of change of sea level in
mm yr21 due to GIA for a suite of Earth models. a, b, Mean sea-level change
(a) and standard deviation (b) computed from the output of 161

GIA model simulations (see text). In both frames, the colour scale saturates
in the near field, which includes areas of post-glacial rebound and
peripheral subsidence.

RESEARCH LETTER



Extended Data Figure 3 | Bootstrapping analysis of GMSL rate for 1901–90
obtained by sampling the global reconstruction of sea level. Data points
show the mean computed from a bootstrapping analysis of the 1901–90
GMSL rate as a function of the number of geographic sites used in the analysis
(ranging from 25 to 600). Error bars, 61s.d. Sites are obtained by randomly
sampling the global KS reconstruction at a subset of tide gauge sites and

introducing data gaps that are consistent with those that exist in the PSMSL
database15. The analysis was repeated 100 times for each choice of the number
of sites. Also shown (horizontal blue line and shading) is the 1901–90 rate and
its 90% CI computed from the KS GMSL curve in Fig. 2 (1.2 6 0.2 mm yr21;
Figs 2 and 3).
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Extended Data Figure 4 | Results of the KS analysis performed using a
random subset of 450 tide gauges. a, KS-estimated GMSL curve derived using
a subset of 450 of the 622 tide gauge records discussed in the main text
(blue line) and the reconstruction of Church and White4 (magenta line) and

Jevrejeva et al.3 (red line). The shaded regions represent the 1s certainty range.
Panels b–f show the KS reconstructions (black lines) at a representative set
of 5 of the 122 sites that were not used in the estimation procedure. The
observations are shown in red.
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