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1 Introduction

Facebook is the most popular social network in the world with over 1 billion active
users. Despite its popularity, little is offerred in the way of truly secure communi-
cation. Therefore, we present a secure mode of communication utilising Facebook
as an innocent-looking medium for transmitting secret objects.

For the project, I will produce a Chrome Extension written in Javascript which
allows users to embed messages up to 140 character long into any image while
uploading it to Facebook. Any of the user’s friends provided with the pre-shared
key can then decode the hidden message using the same extension.

This application is particularly relevant at the moment since the Arab Spring of
2011 showed how wide spread use of social networking sites can be important for
groups to plan uprisings and many governments are now investing heavily in systems
to both access and parse messages shared on social networking websites.

The remaining sections of this project are structured as follows. In Section 2 the
relevant technologies are outlined. In Section 3 the core problems I will solve are
specified and in Section 4 the solutions and implementation details are presented.
Experimental results are provided in Section 5 and the conclusion is drawn in Section
6.

2 Background

2.1 Steganography

Steganography is the science of hiding information. Steganography has many appli-
cations including communicating secret messages by embedding them in innocent
looking cover data, often in the form of images or videos to produce a stego-object.
These stego-objects are then shared on innocent channels where the payload is re-
ceived by a recipient who is provided instructions on how to receive it.

The first known use of steganography was recorded in 440BC by Herodotus who
describes how Demaratus, a recent King of Sparta, carved a message on the wooden
surface of a tablet warning of an impending invasion of Greece before applying a
beeswax surface and writing an innocent message on top. In this case the beeswax
tablet provides the innocent appearing cover while only the contact who knows
Demaratus’ method will be able to recover the secret message.

Since the introduction of “The Prisoners Problem” by Simmons in 1983 we typically
model steganography as the effort of two prisoners, Alice and Bob to communicate
secretely by passing messages via a Warden. In the Passive Warden case, the Warden
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is not allowed to modify the messages being passed although in the Active Warden
case the Warden is allowed to tamper with or generate fake messages for Alice or
Bob to attempt to decode.

2.2 Chrome Extensions and Native Client

Google Chrome is the most popular web browser in the world. It supports many
progressive technologies including installable extensions which are essentially snip-
pets of Javascript with enchanced permission to run in the background, modify sites
displayed to the user, store files locally and display notifications to the user. It was
selected as the target platform for this project due to its popularity and developer
tools.

Native Client (NaCL) is an open-source technology which allows websites to deliver
native compiled code to be run within the browser. In this way a website can deliver
C code, ported to supported the security requirements of Native Client which is then
run in the browser. This allows the use of existing JPEG libraries written in C within
the application without sacrificing the simple browser-only user experience

2.3 Facebook

Facebook is the world’s most popular social networking website. Founded in 2004, it
now has over one billion active users. In August 2012 they reported an average of 300
million photos uploaded to the site every day (http://www.scribd.com/doc/103621762/Big-
Data-Whiteboard-082212).

Users are able to upload an unlimited quantity of photos of up to 2048-by-2048px
and view photos uploaded by their friends.

The huge amounts of innocent traffic and incredible quantity of photos being trans-
ferred makes Facebook is an ideal medium for steganography.

2.4 Coffeescript

Coffeescript is a language which compiles into Javascript. It provides Class based in-
heritence (which compiles into the equivalent prototypical inheritence in Javascript),
provides lots of syntactic sugar and fixes much of the bizzaire beheaviour of Javascript.

Since Chrome Extensions are written in Javascript the majority of the code in this
project was written in Coffeescript and then compiled into Javascript.

Here is an example Coffeescript function which cubes every value in an array (pro-
vided by the Coffeescript website):
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1 cubes = (list) -> (math.cube num for num in list)

and its Javascript equivalent following all best practices:

1 cubes = function(list) {

2 var num , _i , _len , _results;

3 _results = [];

4 for (_i = 0, _len = list.length; _i < _len; _i++) {

5 num = list[_i];

6 _results.push(math.cube(num));

7 }

8 return _results;

9 };

This example demonstrates the syntactic benefit of using Coffeescript over Javascript.

2.5 JPEG

JPEG is the most commonly used image format. It is used by Facebook and the
majority of cameras. For that reason, my application will be based on the JPEG
format for both cover images and stego-objects.

2.5.1 JPEG compression and decompression

The JPEG format is based upon the Discrete Cosine Transform (DCT), a close
relative of the Discrete Fourier Transform.

The first step of JPEG compression is colour space conversion where luminance and
chrominance are seperated and encoded independently. We will be hiding infor-
mation only in the luminance channel of the cover image (for reasons explained in
section 2.6) so the effect of compression and decompression on the luminance of an
image alone is presented here. The details of chrominance compression are similar
but omitted and are explained thoroughly in [x].

The image is initially divided into disjoint 8-by-8 pixel blocks which will be treated
independently. Each block B undergoes the DCT to produce 64 coefficients dk(i),
representing the ith coefficient of the kth block. The list of coefficients represents
the weight of each mode (particular frequency) of the consine wave to be summed
to reconstruct the block as illustrated in Figure 1. In this way we have separated
high and low frequency components.

These coefficients are then quantised by dividing each DCT coefficient by its corre-
sponding element from a quantisation matrix (since high frequency waves are less
perceptible to humans the quantisation step divides higher frequency coefficients
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Figure 1: The 64 cosine modes of an 8-by-8 matrix

by larger values resulting in the prioritisation of lower frequency data over high)
followed by a rounding to the nearest integer.

Dk(i) = round

[
dk(i)

Q(i)

]
(1)

This step represents a many-to-one mapping and hence is lossy. These quantised
coefficients allow us to approximately reconstruct the original image by multiplying
the quantised coefficient by the relevant element in the quantisation matrix and then
performing the Inverse Discrete Cosine Transform (IDCT).

The quantised coefficients are finally encoded using a form of lossless encoding called
Huffman coding before being written to file. The details are unimportant and there-
fore ommitted but explained in x.

2.6 Steganography in JPEG

Many systems have been designed to perform steganography with JPEG-compressed
images forming the stego-objects. In general they operate by modifying some subset
of the quantised coefficients by ±1 to encode payload.

In almost all of them only luminance data is modified since chrominance data is
compressed much more heavily so storing equivalent payload in chrominance data
proves significantly more detectable.

A general embedding function is comprised of two steps: extracting the Luma DCT
coefficients and applying some embedding function to modify them, encoding the
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payload data.

A simple example of the process carried out by an embedding function is given:

1. Select some permutation of the extracted DCT coefficients (typically a shuffle
based on a pre-shared key).

2. Perform Least Significant Bit Replacement (LSBR) on the DCT coefficients
by replacing the least significant bit of each coefficient by a bit of payload.

With the corresponding extracting function:

1. Select the same permutation of the extracted DCT coefficients as used in the
embedding function.

2. Map each coefficient to its Least-Significant-Bit (LSB) to obtain the original
payload.

In this case a pre-shared key (of suitable length to prevent the Warden exhausing
over all possible keys) determines the permutation. They key is used as a seed for
pseudorandom number generater whos output is fed into an algorithm such as the
Knuth Shuffle (rather than simply choosing coefficients in that order) in order to
avoid choosing the same coefficient multiple times.

Many improvements on LSBR have been proposed with many contemporary sys-
tems, such as this, using F5. The F5 algorithm decrements the absolute value of
a coefficient if it’s LSB needs to be flipped (instead of simply replacing the least
significant bit) since this turns out to be less statistically detectable.

3 Problem Specification

3.1 General steganography properties to be acheived

• Correctness: Ext(Emb(c, k,m), k) = m for every cover c, key k and message m
where Ext and Emb are the extracting and embedding functions respectively.

• Robustness: Ext(Trans(Emb(c, k,m)), k) = m where Trans represents the
transmission of the stego-object. In Passive Warden this is the identity func-
tion but in Active Warden it is considered as a function which causes some
(potentially non-deterministic) errors.

• High embedding efficiency: the (average) number of payload bits hidden for
each cover element changed should be as high as possible. I aim to store 140
ASCII characters of hidden message per 960-by-720px image since Twitter
has demonstrated people are happy to communicate in messages of this length
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and 960-by-720px is the largest size available without specifically enabling high
definition images on Facebook.

• Low detectability: the warden’s ability to discriminate between a stego-object
and an innocent cover should be minimised as much as possible. Note that this
project does not aim to acheive low detectability since it is an open problem
in steganography and acheiving robustness when transmitting a JPEG with
errors is the primary goal.

3.2 Interacting with Facebook without an API key

The application should not depend on Facebook’s approval and should be near
unblockable by Facebook.

Facebook supports a feature known as Apps where developers are provided an API
key to access data for users who indicate they wish to use an app. This would
provide a simple way for users to create, upload and manage their stego-objects.
Unfortunately, this would leave Facebook with the power to revolk our API key so
it is not an option.

Therefore a core problem to solve is how to design an application which cannot easily
be disabled by Facebook but is able to interact with a users data on Facebook.

3.3 Being simple to use

A user with a techncial background should be able to send and receive messages
without human assistance or prior explanation.

3.3.1 Integrating with the browser

Since the application is highly tied to Facebook I aim for all interaction with the
software to happen within the browser, or if possible within Facebook itself. Hence
having selected Chrome as the target browser, the main options to consider are
Chrome Applications and Chrome Extensions.

3.4 Being subtle to use

Using steganography should be as subtle as possible given the nature of secret mes-
saging. This reinforces the decision not to use a Facebook App since an App’s users
are listed publicly, violating users secrecy requirements. Furthermore, we should
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avoid requiring users to connect to any specific server to generate stego-images
since this would be easily detectable by network analysis.

A problem we therefore must solve is how to design a tool which can operate inde-
pendently of the network and without disclosing its userbase publicly.

Note that we do not consider the distribution and update of the software as a
problem to be solved since this is an open problem in steganography.

3.5 Not storing unencrypted messages or details of contacts

I wished to avoid the case where gaining access to a computer would allow you to
easily access previous conversations or lists of contacts. The following options are
therefore considered:

1. Provide contact and shared-password storage with a single master password
required to access it or initiate a poll for new messages.

2. Require the user to enter their pre-shared password every time they attempt
to encode or decode an image and store nothing persistantly.

3. Have the user share two keys with each of their contacts, one for revealing
whether payload is stored within an image and the other for decoding the
message. In this way the application could poll stored contacts and find new
stego-objects, then prompting the user for the decoder password to receive the
message.

Option 2 was chosen for simplicity although in future I would like to implement
option 3, providing the user the option of storing a list of their contacts in the
application along with the password to detect a message from said contact. The
software can then allow the user to check a secret messages inbox, providing the
message password to decode the messages.

3.6 Not changing stuck-bits of JPEGs when embedding payload

It is well known in the field of JPEG steganography that you should avoid modifying
certain sections of an image to remain visually undetectable. A popular heuristic is
to never change a coefficient set to zero. These coefficients and their corresponding
least significant bit are hereby known as ‘stuck’.

Since JPEG is a very efficient compressor we find on average that up to 75–95%
of quantised coefficients in an image are zeros. Since we quantise higher frequency
modes more greatly we find that the number of zeros, and hence stuck-bit rate
increase as frequency as Figure 2 demonstrates.
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Figure 2: Average stuck-bit rates of different modes from a sample of 10 JPEGs

These high stuck-bit rates mean that steganography algorithms generally only store
payload in the lowest modes, taking advantage of the lower stuck-bit rates.

In general steganography algorithms are designed to encode maximum payload
whilst making the smallest number of changes by assigning many long codewords to
each short message and then selecting whichever codeword best matches the coef-
ficients. Conveniently this same idea also solves the stuck-bit problem by allowing
the encoder to select an codeword which doesn’t require a stuck-bit to change. (cite
Jessica)

These algorithms are incompatible with an Active Warden since they require both
the sender and receiver to know which bits are stuck (so they can be ignored),
meaning that if any coefficients change to or from zero during recompression then
decoding will fail.

Hence if Facebook’s recompression introduces no errors we can implement known
algorithms but if (as we shall see is the case) the JPEG recompression introduces
errors then a problem we must tackle is how to design a new kind of code which can
both avoid changing stuck bits and fix errors.

3.7 Existing steganography tools are incompatible with Facebook

The mathematics of JPEG compression and decompression suggests that multiple
compressions with the same quality factor will not cause a change to an image’s
coefficients. This idea is loosly backed by the literature
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8 6 6 7 6 5 8 7
7 7 9 9 8 10 12 20
13 12 11 11 12 25 18 19
15 20 29 26 31 30 29 26
28 28 32 36 46 39 32 34
44 35 28 28 40 55 41 44
48 49 52 52 52 31 39 57
61 56 50 60 46 51 52 50

Table 1: Quantisation matrix used by Facebook’s JPEG implementation

“Moreover, we also imposed that the QFs between two consecutive
compression stages must differ by at least 3 units. In this way, we avoided
the trivial case in which an image is recompressed with the same QF,
since this would lead to ... as if no additional compression has been
performed at that stage.”

I hoped to exploit this by compressing images in the same way as Facebook before
uploading them. They would then be recompressed with no errors and stored on
the site, providing an error free channel.

The first problem with confirming this hypothesis was the lack of direct access
to Facebook’s JPEG implementation which was tacked by running experiments to
determine the settings used by Facebook’s compression algorithm, specifically the
quality factor they use.

3.7.1 Facebook’s JPEG implementation

The literature states that Facebook uses quality factor 85 for storing JPEGs [TODO:
cite me]. To verify this, 10 uncompressed images (of dimension 960-by-720) were
compressed using JPEG at Quality Factor (QF) 85 and uploaded to Facebook. Once
downloaded the coefficients of the new images were extracted and compared with
those of the original images. The new coefficients were found to be on average x%
larger than the originals with very little variance. The test was repeated with QFs
55 and 35, resulting in average changes of y% and z% respectively.

It was observed that these values fit a straight line on a graph of QF against per-
centage change. Solving the equation of this line to find a change of 0% gave a
QF of 75. Comparing a QF 75 JPEG’s coefficients before and after re-compression
by Facebook results in an average error rate of 6% (down from approximately 99%
for all other QFs tested) indicating Facebook does use QF 75 when compressing
images.
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To confirm Facebook’s use of QF 75 I used Libjpeg to extract the quantisation ma-
trix of an image downloaded from Facebook and compared it to that of an image
compressed with QF 75 by the reference JPEG implementation (provided by the In-
dependent JPEG Group). The quantisation matrices were equal (provided in Table
1) and hence the default compression functionality of a reference implementation
with QF 75 is acceptable as an approximation to that of Facebook and is as close
as can be within the scope of this research. (Should I skip the above information
about how I actually found QF 75 in favour of this last paragraph which was in fact
the correct way to do it)

3.7.2 Multiple JPEG compressions with the same quantisation matrix

It appears that when compressing an image multiple times using the same quality
factor there is unfortunately a significant amount of change to the coefficients before
and after they were decompressed and recompressed.

Henceforth the coefficient-error rate is defined as the percentage of non-zero coeffi-
cients that changed after compression. We only measure the change in non-zero coef-
ficients since as discussed earlier only these coefficients are used for storing payload.
To assess the precise nature of these changes more tests were run as follows.

I selected 50 uncompressed images at random and compressed them at QF 75. I
then decompressed and compressed them again at QF 75. These images exhibited
a surprisingly high coefficient-error rate of 5–10%. Looking back at the JPEG
compression operation I realised that images whose widths are not a multiple of 8
are padded before compression. Selecting a new sample of 50 uncompressed images
with dimensions a multiple of 8 reduced this rate to 1–5%.

Note that this new requirement for a cover image’s dimensions to be a multiple
of 8 should be solved by the system to prevent users being required to select such
images. This is another problem to solve, most likely to cropping images to the
nearest multiple of 8 before embedding payload.

Experimentally I determined that the coefficient-error rate decreases by approxi-
mately 1/2 upon each decompression/recompression cycle. For example, let I1 be a
single randomly selected image initially compressed at QF 75. Let Ij be the same
image decompressed and recompressed j times with QF 75. Let ∆(I, J) be the
fraction of DCT coefficients which differ between I and J . When testing 50 images,
we find on average:

∆(I1, I2) ≈ 3.1%
∆(I2, I3) ≈ 1.6%
∆(I3, I4) ≈ 0.9%
∆(I4, I5) ≈ 0.7%
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These experimental findings were backed up by a paper published in 2010 titled
‘Detecting Double JPEG Compression With the Same Quantization Matrix’:

“Furthermore, when recompressing the JPEG image over and over
again, the number of different JPEG coefficients between the sequen-
tial two versions will monotonically decrease in general. For example,
the number of different JPEG coefficients between the singly and doubly
compressed images is generally larger than the number of different JPEG
coefficients between the corresponding doubly and triply compressed im-
ages.”

I suspect colour subsampling and colour space conversion are responsible for the
coefficient-error rate measured since in theory the DCT and quantisation should
cause no change in coefficients.

3.7.3 A new steganography algorithm is required

Existing JPEG steganography techniques all require JPEGs to be transmitted with-
out error since in many cases a single coefficient change has the potential to com-
pletely destroy the entire payload. We have shown that this is not possible in the
case of transmitting JPEGs over Facebook.

The largest problem that must therefore be solved is how to design embedding and
extraction functions which can avoid modifying stuck bits and also survive the 1–
5% coefficient-error rate for recompressing a QF 75 JPEG since we know that no
existing steganography algorithm can do this.

Note that if we are unable to reach the robustness goal then an option would be to
recompress the cover image a number of times before embedding the payload. This
would exploit the above property of monatonicly decreasing coefficient-error rate
but may potentially cause increased detectability.

4 Implementation

4.1 Codes for embedding payload

The first problem solved was how to design a code which can modify coefficients by
±1 to store payload while not changing stuck bits and being resistant to an error
rate of 1–5%.

It is worth recognising that pre-existing “good” steganographic codes have a very
small distance between codewords so the maximum number of bits can be encoded
while making a very small number of changes to the bit-stream. Conversely, error
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correction codes aim to have the highest possible distance between codewords, there-
fore requiring a large number of changes to the bit-stream to change the payload
slightly. Hence combining these two ideas is fundamentally a hard problem and there
will always be a certain amount of trade-off between high capacity, low dectability
properties and error-resistant properties within any code we create.

A number of potential codes were considered to solve this problem, the most promis-
ing of which were from a class known as Partitioned Linear Codes. These are pre-
sented and an alternate option will be briefly outlined in the conclusion.

4.1.1 Partitioned linear codes

Here we present a partitioned linear code first introduced in [TODO: CITE]

For this section we model the channel of transmitting images on Facebook as a noisy
channel with a fixed error rate to be determined as approximatly the rate coefficients
are changed non-deterministically as part of recompression.

The code presented is a Modified Linear Block Code (MLBC), capable of dealing
with both random transmission errors as well as stuck bits with the assumption that
the location and nature of the stuck bits are known to the encoder but not to the
decoder.

4.1.2 Conceptual explanation of the code

In a partitioned linear code the encoder has a collection of error-correction codes it
may use – in this way it can choose the one which most agrees with the stuck-at
requirements of the transmission medium. The decoder doesn’t need to know which
error correction code was used due to the algebraic properties of the code as we
will see so messages are decoded without the decoder ever knowing which bits were
stuck.

To deal with stuck bits consider partitioning the set of all possible binary messages
n-bits in length into 2k disjoint sets {A0, A1, ..., A2k} and associate a k-bit message
with each subset. Now when a k-bit message w ∈

{
0, 1, ..., 2k

}
is given to the

encoder along with a description of the stuck-at bits the encoder selects a message
x ∈ Aw such that x satisfies the stuck at requirements. The decoder then identifies
x as a member of Aw and can correctly decode w without knowing the location of
the stuck bits.

To accommodate random errors in conjunction with stuck bits we partition error
correction codes as above. The decoder receives y = x + z, a noisy copy of x, but
x can be decoded since y was encoded with a random error correction code. The
decoder may then proceed as it did previously.
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4.1.3 Modified Linear Block Code usage

Let G = [GT
0 , G

T
1 ]T and H be the (k+ l)×n generator matrix and r×n parity-check

matrix where G0, G1 are l × n, k × n matrices and GHT = 0 where n = l + k + r.
Let J be a k × n matrix such that G0J = 0 and G1J = I.

Let G0, G1, H and J be full rank.

To encode a 1 × k message w compute x = wG1 + vG0 where v is a 1 × l vector
selected to maximise the agreement between x and the stuck-bits. (Note: x is now
an n-bit vector and the number of stuck bits we can handle is linked to l although
this relationship is unclear).

Let y = x+ z where z is noise (and the noise is allowed to affect the stuck bits). If
yHT = 0 then we expect z = 0 and no errors occurred since we assume the least
number of errors which satisfy the equations is what actually occurred and

yHT = (x+ z)HT

= (wG1 + vG0 + z)HT

= wG1H
T + vG0H

T + zHT

= w0 + v0 + zHT

= zHT

If yHT 6= 0 then z 6= 0 and y contains errors which are fixed by finding the noise
vector, z, with the minimum hamming weight (number of non-zero symbols), Wh(z),
such that zHT = yHT . Using y = x+ z we can now compute x.

Now the decoder has x, so compute xJT = wG1J
T + vG0J

T = wI + v0 = w.

4.1.4 Code generation

[TODO: CITE HEEGARD] gives a systematic form of an (n, k, l) MLBC (where n,
k and 2l are the encoded codeword length, decoded codeword length and number
of encodings the encoder may choose between to avoid stuck bits respectively) with
the following generators:

G1 = [Ik 0k,l P ] and G0 = [R Il Q] (2)

Where r = n − k − l, P is a k × r matrix, R is an l × k matrix and Q is an l × r
matrix. These give the following parity matrix and decoding matrix:

H =
[
−P T − (Q+RP )T Ir

]
and J = [R Il Q] (3)
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4.1.5 Error correction and stuck-bit capacity of MLBCs

For an (n, k, l) MLBC with generators G0, G1 and parity check matrix H define a
pair of minimum distances, (d0, d1) such that

d0 = min
xHT=0, x 6=0

Wh(x) and d1 = min
xGT

0 =0, xG1 6=0
Wh(x) (4)

whereWh(x) is the hamming weight of x, the number of non-zero symbols in x.

Now an MLBC with minimum distances d0 and d1 is t-stuck-bit, u-error correcting
if and only if

u <

{
d1
2 , for t < d0
d1
2 + d0 − t− 2, for t ≥ d0

(5)

4.1.6 Example

Using systematic form we generate a (7, 2, 1) code with sending rate 2/7 capable
of fixing any single error but with no guarentees on stuck bits. It has the following
generator, parity and decoding matrices:

G1 =

[
1 0 0 1 1 1 1
0 1 0 1 1 0 0

]
and G0 =

[
1 1 1 1 0 1 0

]
(6)

H =


1 1 1 1 0 0 0
1 1 0 0 1 0 0
1 0 0 0 0 1 0
1 0 1 0 0 0 1

 and J =

[
1 0 1 0 0 0 0
0 1 1 0 0 0 0

]
(7)

Observe that G0J
T = 0, G1J

T = I, GHt = 0 and G, H and J are full rank, as
required.

Now we encode w =
[
0 1

]
with the stream s =

[
1 0 1 1 1 1 1

]
where

the zero indicates that the 2nd position in the transmission medium (‘stream’) is
stuck at 0 while the others can take either 0 or 1. Hence we take v =

[
1
]

so
x = wG1 + vG0 =

[
1 0 1 0 1 1 0

]
and the 2nd bit in the encoding now

agrees with the stuck-bit in the stream.

Now let z =
[
1 0 0 0 0 0 0

]
to simulate a single error in the first position so

y = x+ z =
[
0 0 1 0 1 1 0

]
.
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Now the decoder receives y and observes S = yHT =
[
1 1 1 1

]
6= 0 so an error

is detected. The decoder proceeds by finding z such that zHT = S and Wh(z) is
minimised, resulting in z =

[
1 0 0 0 0 0 0

]
. Now x = y−z can be calculated

and w = xJT =
[
0 1

]
gives the original message despite the stuck-bit and error in

transmission.

4.2 Coffeescript Implementation of MLBCs

4.2.1 Matrix library

The first task was to write a matrix library for binary matrices to be used for
encoding and decoding. This was done using 2-dimentional arrays in the obvious
way without more complex optimisations such as Strassen’s Algorithm.

As an example, here is a snippet demonstrating adding two matrices together:

1 addMatrices = (m1, m2) ->

2 if width(m1) != width(m2) || height(m1) != height(m2)

3 throw "Dimentions don ’t match in addition"

4 m = newMatrix(height(m1), width(m1))

5 for row in [0.. height(m1) -1]

6 for column in [0.. width(m1) -1]

7 m[row][ column] = (m1[row][ column] + m2[row][ column ])%2

8 return m

I also implemented functions to reduce the given matrix to row-echelon form, mul-
tiply matrices, transpose, scale by a contant, join horisontally and vertically, check
for equality, calculate row rank, and calculate hamming weight. Many Javascript
libraries for matrices are available but many support advanced features and use
complex data-types which make adding functions or modifying beheaviour difficult.
Since in total this library is less than 500 lines of simple code I deemed it small
enough to be worth writing myself.

4.2.2 Generating MLBCs

Implementing MLBC generation in Coffeescript is simple, combining random matri-
ces to genereate the systematic form as it was stated above. The only detail to be
aware of is that H may not be full rank, so we introduce a loop to keep generating
Hs until we find one with full rank and then proceed as expected. The Coffeescript
code implementing MLBC generation is provided in Appendix 1.
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4.2.3 Encoding a single block using Coffeescript

Recall that to encode a a 1× k message w we compute x = wG1 + vG0 where v is a
1× l vector selected to maximise the agreement between x and the stuck-bits.

This is implemented using a function named minimizeStuckBits which finds v and
adds vG0 to wG1 to produce x as required. To find v such that x agrees with
the stuck bits in the stream as much as possible we generate every possible vector
v and attempt it, stopping early only if we find a perfect solution. This naive
solution runs in O(2ll2n) time where l is usually no larger than 10 so this suffices.
minimizeStuckBits is given below:

1 minimizeStuckBits = (G0, stream , origMessage) ->

2 origStuckBitCount = width(stream) - hammingWeight(stream)

3 # Generate every binary vector of length height(G0)

4 vectors = allVectors(height(G0))

5 minWrongBits = -1

6

7 for vector in vectors

8 matrix = [vector]

9 messageToSend = addMatrices(multiplyMatrices(matrix , G0),

origMessage)

10

11 currentWrongBits = 0

12 for column in [0.. width(stream) -1]

13 if stream [0][ column] == 0

14 if messageToSend [0][ column] != 0

15 currentWrongBits ++

16

17 if currentWrongBits < minWrongBits || minWrongBits == -1

18 minWrongBits = currentWrongBits

19 bestVector = vector

20 if minWrongBits == 0

21 break

22

23 debugOutput ("Best we can do is have "+ minWrongBits +" stuck bits

remaining from a starting "+ origStuckBitCount)

24 return addMatrices(multiplyMatrices ([ bestVector], G0), origMessage)

where allVectors was implemented in O(n2n) time as follows:

1 allVectors = (n) ->

2 vectors = []

3 if n == 0

4 return vectors

5 vectors.push [0]

6 vectors.push [1]

7 if n == 1

8 return vectors

9 for i in [0..n-2]

10 count = vectors.length
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11 for j in [0.. count -1]

12 vectors[j+count] = vectors[j][..] #Copy the array to a new

location

13 vectors[j].push 0 #In the first copy add a 0 on the end

14 vectors[j+count].push 1 #In the second copy add a 1 on the

end

15 return vectors

4.2.4 Decoding a single block using Coffeescript

Decoding a message is significantly more complex. Recall that the decoder receives
y = x + z where z is noise and xJT is the original message. To calculate x we
computer the syndrome S = yHT and then find the most probable noise vector, z,
which minimises Wh(z) such that S = zHT .

Unlike encoding, the naive approach of exhausting over z quickly becomes unusable
since it runs in O(2nnlk) time where n is the bit-length of the encoded message
(often large). To find z I considered the problem as one of xor-satisfiability and
designed a backtracking algorithm which explores solutions in order of increasing
hamming weight.

Recalling that H is an r × n matrix, for each column i of the 1× r syndrome S we
have

S1,i =
n⊕

j=1

z1,j ×HT
j,i (8)

by the definition of matrix multiplication (modulo 2). Hence we derive the following
pseudo-code algorithm to construct a xor-satisfiability problem:

constraints = {}
for each column, i, of S do

mustXorTo = S1,i
elements = {}
for each row, j, in HT do

if HT
j,i == 1 then elements = elements ∪ j

end if
end for
constraints = constraints ∪ (elements, mustXorTo)

end for

We have now produced a set of constraints, each a pair (elementsi,mustXorToi)
such that
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⊕
e∈elementsi

z1,e = mustXorToi (9)

The algorithm idea is to attempt to assign each variable to 0 and only re-assign it
to 1 if it creates a conflict with any constraint. Initially a value MaxOnes is set to
1 and only up to that number of 1s are permitted. On each loop if no acceptable
assignment can be found with the given value of MaxOnes then it is incremented.
The algorithm terminates either when we’ve assigned the last variable and there were
no conflicts or when there are no possible backtracks and we are at a conflict.

To demonstrate the algorithm in practice the following example run is provided.

Input:

[{elements : [0, 1, 2],mustXorTo : 0} , {elements : [1, 2],mustXorTo : 1}]

Output:

Step Assignment MaxOnes Backtrack
1 [0, undef, undef] 1 [0]
2 [0, 0, undef] 1 [0,1]
3 [0, 0, 0] 1 [0,1,2] ← Conflict so backtrack to 2

4 [0, 0, 1] 1 [0,1] ← Conflict so backtrack to 1

5 [0, 1, undef] 1 [0]
6 [0, 1, 0] 1 [0] ← Conflict so backtrack to 0

7 [1, undef, undef] 1 []
8 [1, 0, undef] 1 [1]
9 [1, 0, 0] 1 [1,2] ← Conflict so backtrack to 2

10 [1, 0, 1] 1 [1] ← Exceeded MaxOnes so back-
track to 1

11 [1, 1, undef] 1 [] ← Exceeded MaxOnes and no
available backtracks so reset with
MaxOnes = 2

12 [0, undef, undef] 2 [0]
...

...
...

...
21 [1, 1, undef] 2 []
22 [1, 1, 0] 2 [2] ← Success, return Assignment

The full code for this algorithm is given in Appendix 1 (note that many optimisations
such as propagating constraints and reordering variables to try most restrictive first
were implemented but made little practical difference unless n > 50 and since I
later chose n < 40 they were refactored out to keep the code base as simple as
possible).
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Now using z, the decoder can compute (y − z)JT = xJT = wG1J
T + vG0J

T =
wI + v0 = w, the original message (assuming z was found correctly).

4.2.5 Encoding and decoding longer messages

The implementations provided so far can only encode a single block of binary pay-
load. The next step was to enable encoding and decoding of long ASCII messages
using an (n, k, l) MLBC. Since the medium is an stream of bits it was required for
messages to include a header indicating the total message length so the decoder
can unambiguously know the payload is an actual message as well as when to stop
decoding.

Since I had selected the (27, 11, 3) code by this point the implementation of the
following assumes k = 3 to simplify certain aspects of padding and headers as
indicated.

The first step is to convert message from ASCII into a binary vector m and pad it
such that it fits neatly into blocks of length k. The end of the message was padded
with (k− |m|)%k zeros (where |m| is the length of the ASCII message in binary) to
produce mp.

Since k = 3, and a single ASCII character is 8 bytes long we can unambiguously
discard any padded bits since there can never be enough padding to be mistaken
for a character. If we took k > 8 then since 00000000 in ASCII represents the null
character, the decoder will receive the original message followed by b(k−(|m|%k))/8c
null characters which was deemed also acceptable within the context of this project.
Postfix Length Padding could be used in future versions if true unambiguous padding
removal is required, for example if the message is in a more general encoding or k > 8
and ambiguous null characters are deemed unnacceptable.

Take the padded message mp and prepend the length in blocks of the message
|mp|/k, followed by a terminal #, both encoded using a 3-repitition code to both
ensure |mh|%k = 0 (where mh is the padded message with header) and minimal
errors occur in header transmission since this would prevent any of the message
being received. The use of the 3-repition code with k = 3 avoided the need for
header padding although in the situation with k > 3 we could simply pad the
header after applying the 3-repition code for its error correction properties.

To decode mh the decoder would keep accepting more input while reading only
3-encoded ASCII numbers or the terminal #. If this pattern was not found the
decoder would reject its input stream and claim no message was found.

The padded message with header mp is now left and can now be split into mp/k
blocks and encoded/decoded using the method outlined in section x, Encoding using
Coffeescript. (Check: Check section correct)
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4.2.6 Measuring error-correction and stuck-bit capacity of MLBCs in
Coffeescript

Recall that an MLBC with minimum distances d0 and d1 is t-stuck-bit, u-error
correcting iff

u <

{
d1
2 , for t < d0
d1
2 + d0 − t− 2, for t ≥ d0

(10)

where

d0 = min
xHT=0, x 6=0

Wh(x) and d1 = min
xGT

0 =0, xG1 6=0
Wh(x) (11)

Since we are only using the lowest frequency modes we expect to have significantly
fewer stuck bits to avoid than errors to correct. Therefore we may take t = d0 − 1
and u = bd12 c.

d0 and d1 can be found using the same xor-satisfiability algorithm as given in section
3.3.4 with the modification such that an additional constraint function can be passed
in (taking advantage of higher-order functions in Javascript) and passed the valid
assignments each time one is found. In this way we can add a check at the end for
d0 that all of the variables are not assigned to zero and a check for d1 that xG1 6= 0,
in both cases causing a backtrack if they are.

TODO: Explain somewhere how we measured error rates in recompression of differ-
ent modes.

4.2.7 Selecting the best MLBC

Following recompression, the average error rate for non-zero coefficients within the
1st mode of DCT coefficients was experimentally approximated as 4% in section
2. Therefore assuming all stuck-bits are avoided, a k

n embedding efficiency and a
padded message |mp| bits in length then to ensure the probability that no more than
one error occurrs in message transmission is < 95% we need

Modelling the number of errors that occur when transmitting q bits as a poisson
distribution with mean λ = q/4

For n ∈ {10, . . . , 60}, k ∈ {5, . . . , n− 1}, l ∈ {0, . . . , n− k}, I generated 1000 (n, k, l)
MLBCs, storing a table of the number of errors u and stuck-bits t the best of the
1000 could correct for. The value of 60 as an upper bound for n was chosen to ensure
the encoding and decoding times would be acceptable on average devices.
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From this table a number of potential codes stood out. The best (27, 3, 11) code
is a 2-error, 3-stuck-bit code with over 10% message rate and seems like a good
candidate. The current performance measures provide guarantees for when less than
a given number of errors and stuck bits occur but say nothing about how the codes
will perform in situations where error rates and stuck-bit rates are higher. Since in
practice errors and stuck bits will vary with some distribution I built a simulation
tool to experimentally verify whether the (27, 3, 11) code could withstand real world
usage. A snippet of debug output from the tool demonstrating stuck-bit avoidance
and fixing errors is provided:

1 Now we encode w = 0,1,1

2 origMessage: 0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0

3 stream: 1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1

4 We can avoid 3 of the 3 stuck bits

5 x = wG1 + vG0 = 0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0

6 Introduced 2 errors (based on error rate of 0.04)

7 Let y = x + z = 0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0

8 S = yH^t = 0,0,1,1,1,1,0,1,0,0,0,1,1

9 Errors minimised by z =

0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 with

hammingWeight 2

10 Attempted to fix errors , xNew =

0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0

11 Recovered message w’ = xNewJt = 0,1,1

12 0 errors occurred

The tool indicates that in simulation the (27, 3, 11) code has an error rate of 0.01%
when the underlying transmission medium has a bit error rate of 4% and stuck-bit
rate of 5%. This was deemed to be suitable and I proceeded to implement the JPEG
functionality of the project.

4.3 JPEG encoder and decoder implementation

Javascript is still seen as a lightweight language, uncapable in terms of performance
of complex tasks such as JPEG compression and decompression, hence there is very
little in terms of available code for these tasks.

Only one open source Javascript encoder and one decoder could be found online.
The encoder was ported by an open source Action Script 3 by Andreas Ritter and the
decoder was based on a simple open source Javascript decoder published on GitHub
by notmasteryet. The decoder required only minor modifications while the encoder
required major flow restructuring and bug fixing in order to allow interaction with
the DCT coefficients.
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4.3.1 JPEG decoding with DCT coefficient access in Javascript

Modifying the decoder was relatively simple since I could store DCT coefficients in
a global variable as they became available within the flow of the code. Only minor
tweaks were then required to ensure it was stored correctly.

The decoders success callback was then modified to also pass the DCT coefficients
array to its calling function.

4.3.2 JPEG encoding with DCT coefficient access in Javascript

Modifying the encoder was significantly more complicated than modifying the de-
coder since we will need access to all the coefficients before any are written to the
file in order to know how to modify them, whereas in the decoder we could simply
collect the DCT coefficients and pass them out at the end.

Unfortunately the only Javascript JPEG encoder available worked by scanning ver-
tically down the image and producing the output for each line as it went which is
unsuitable for the embedding function since we need access to all of the coefficients
in order to decide where to embed payload. The flow was restructured into three
stages: firstly scanning the whole image to produce all DCT coefficients, then calling
a passed-in function with a reference to the coefficient array, allowing it to modify
them, then processing and writing the coefficients to a file.

This refactoring caused many hours of difficult bug fixing, particularly the case where
one deeply call-nested array, outputfDCTQuant, an array which for each pass stores
quantised DCT coefficients, was modifying references in a most unexpected way. For
example, outputfDCTQuant[i] would be set to a variable x by one pass and then
set to a different variable, y on the next pass. Instead of reassigning the ith cell
of outputfDCTQuant, the assignment outputfDCTQuant[i] = y was evaluated as x
= y, pointing x to y and causing every line of scanned coefficients to be the same
as the final line. A simple outputDCTQuant = new Array(); on each pass proved
to be the solution. Discovering this bug amongst such contrived and side-affect-
riddled code such as writeBits(HTAC[(nrzeroes <<4)+category[pos]]); with
variables named by scheme (e.g. tmp0p2, z3p2) marked a significant personal success
within the project.

Other bugs include my choice to use i as a counter within a for-loop where some
nested call also used i without the var keyword, overwriting the outer value. A
final notable bug was caused by the original authors decision to name a variable
fDCTQuant within a function which was also named fDCTQuant.
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4.4 Putting the back end together

We now have access to an image’s DCT coefficients and the ability to encode an
ASCII message by providing the encoder a stream indicating which bits must remain
zero and which can be changed. The next step is to piece the two together. In the
case of creating a new stego-object we take a cover image and modify its DCT
coefficients during compression by choosing some permutation of coefficients (based
on a password) and calculating which bits are stuck, using this to inform the encoder
on how to encode the ASCII message. We then modify the coefficients of the cover
so the Least Significant Bits match the encoded message.

To decode the payload from a stego-object the the LSBs of the permutation of
coefficients is extracted and then decoded using the technique for decoding large
messages given above, correcting for errors as it goes.

4.4.1 Connecting the message encoder to the JPEG encoder

Now we have a method to gain access to the DCT coefficients of an image during
encoding we need to specify how we pass information from the coefficients to the
MLBC encoder along with the message and key and then use the resulting informa-
tion to modify the DCT coefficients.

At a high level this process is all carried out by the following snippet:

1 # LUMA_ARRAY is a 2d array of blocks of coefficients belonging to

modes. The number of blocks is given by the variable ‘blocks ’

2 LUMA_ARRAY = DU_DCT_ARRAY [0]

3 # List references to all the coefficients in mode 1 so we can shuffle

them and use this order to modify them

4 coeffOrder = getValidCoeffs(LUMA_ARRAY , blocks)

5 # Apply knuth shuffle to coeffOrder

6 shuffle(coeffOrder , password)

7 # Generate the ‘stream ’ of stuck bits from LUMA_ARRAY , accessed in the

order determined by coeffOrder

8 stuckBitStream = coeffsToStuckBitStream(coeffOrder , LUMA_ARRAY)

9 # Apply MLBC encoding to the message using the generated stuck -bit

stream

10 messageToHide = encodeLongMessage(mlbc , message , stuckBitStream)

11 # Modify the LUMA_ARRAY using the F4 algorithm to hide the message

12 stuckBitErrors = makeChanges(messageToHide , coeffOrder , LUMA_ARRAY)

The getValidCoeffs function takes D (known above as LUMA ARRAY), an array
of arrays where LUMA ARRAY[k][i] = Dk(i) represents the coefficient of the ith
mode of the kth block. It returns list of coefficients which will be shuffled to create a
‘coefficient order’, the list representing in which order coefficients are to be modified
to store payload. The indices in the coefficient order are stored in the format 64k+ i
representing the index of the ith mode’s coefficient within the kth block.
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The shuffle function implements an idea called Permutative Straddling to generate
the order c in which to access the coefficients. This permutation is seeded by the
key and used identically in both embedding and extracting so the users can store
their data in a seemingly random order. This has the benefit of only allowing users
with the correct key to access the message while spreading changes caused by the
algorithm evenly throughout the cover. It is implemented using a Knuth Shuffle in
the following way:

1 shuffle = (arr , password) ->

2 # Seed the random number generator using the password

3 Math.seedrandom(password)

4 for i in [arr.length -1..0] by -1

5 j = random(0, i)

6 swap = arr[j]

7 arr[j] = arr[i]

8 arr[i] = swap

9 Math.seedrandom ()

The final Math.seedrandom() resets the seed for security. This is a minor concern
but may prevent accidentally leaking information about the seeded password to
elsewhere within the code.

The coeffsToStuckBitStream function produces an array s of 0s and 1s, where

si =

{
1 if Db(ci/64)c(ci%64) = 0

0 otherwise
(12)

where ci is the ith element of coeffOrder and as before, Dk(i) is the coefficient of
the ith mode within the kth block.

The makeChanges function takes the encoded message mh, the coefficient order c
and the array of DCT coefficients D. It decrements the absolute value of Dk(i) so
Db(cj/64)c(cj%64) % 2 = mh(j) for j ∈ {0 . . . length(mh)}. This embedding opera-
tion is a more secure alternate to LSBR known as F5 and prevents a number of
statistical steganalysis techniques. (?)

The function which carries out these steps was passed as a higher-order function
into the JPEG encoder which applies it to the DCT coefficients after quantisation
but before applying huffman encoding and writing them to a file.

4.4.2 Connecting the message decoder to the JPEG decoder

Connecting the decoders is similar but slightly simpler. First we generate c, the
coefficient ordering and then extract the LSBs of D in that order to produce mj , the
padded message with header followed by junk, such thatmj(i) = Db(ci/64)c(ci%64) % 2.
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The header is then decoded to allow mp, the padded encoded message, to be ex-
tracted from mj . mp is then decoded to produce the original ASCII message as in
section x.

4.5 User interface implementation

4.5.1 Architecting the extension

The actual encoding and decoding functions are running in a file known as a ‘back-
ground script’ which can communicate with other aspects of the extension, such as
code injected into Facebook. A small snippet of Javascript is injected to manage
decoding messages from images or opening an iframe which allows the user to cre-
ate a new stego-object. Both the iframe for encoding and the decoding Javascript
communicate with the background page to encode or decode messages.

This was necessary for two reasons. Firstly, because injecting complicated Javascript
into Facebook itself risked code collisions and increased detectability. Secondly,
since creating a new stego image happens within an iframe whose domain is the
extension while decoding a message happens within the domain of Facebook so
both would require an independ copy of the code due to Chrome’s security features
not allowing cross-domain communication. Therefore running a single copy of the
encoding/decoding code and allowing sections of the extension to communicate with
it was the best architectural choice.

Working with the extension messaging API in Chrome was simple but a single bug
took many hours to solve, since it turned out to be a bug within Chrome itself for
which I have implemented a work-around and filed a bug report on.

4.5.2 Injecting code into Facebook

Chrome Extensions allow developers to easily specify which code to inject into which
website. Each extension has a manifest file where this can be specified.

In this case I added the following to my extensions manifest file:

1 "background ": {

2 "page": "background.html"

3 },

4 "content_scripts ": [{

5 "js": ["js/jquery -1.9.1. js", "js/keymaster.js", "js/inject.js"],

6 "matches ": ["http ://www.facebook.com/*", "https ://www.facebook.com

/*"]

7 }],

8 "web_accessible_resources ": [

9 "index.html"
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10 ]

which automatically launches background.html in the background and injects the
three Javascript files into Facebook which which will overlay index.html on top of
Facebook to provide a form for creating stego-objects.

4.5.3 Hotkey based activation

Activating the UI with hotkeys was simple. I injected a library called Keymaster,
written by Thomas Fuchs, along with the following line into Facebook:

1 key(‘ctrl+alt+a’, function (){ activate (); });

4.5.4 Injecting a form into Facebook to create stego-objects

If a user is currently viewing an image and activates the extension they will be
prompted for a password and the extension will attempt to decode the stego-object.
If the user is on any other page on the website they are prompted to create a new
stego-object. To manage the user interface the following javascript is injected into
Facebook:

1 function activate () {

2 var url = getImage ();

3 if (url) {

4 var password = prompt (" Please enter your password to decode the

message.", "");

5 var message = decodeMessage(url , password);

6 if (message) {

7 alert (" Message received :" + message);

8 } else {

9 alert ("No message could be found");

10 }

11 } else { // Couldn ’t find the image

12 openStegoObjectCreation ();

13 }

14 }

Where decodeMessage communicates with the background script to receive the de-
coded message and the openStegoObjectCreation function injects an iframe into
the center of the screen, rendering the form to generate stego-objects. Injecting an
iframe was preferred to adding element to Facebook since it minimises the posi-
bility of Facebook making breaking changes or naming conflicts occurring between
Facebook’s and the extension’s Javascript libraries.

The iframe is contained in a wrapping div in order to allow the iframe to be ho-
risontally centered using the “margin: 0 auto” CSS property.
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5 Analysis

5.1 Error rate in practice

5.2 Detectability

Figure 3: 200% zoom of before and after embedding a secret message. Changes are
slight enough that without access to the original it would be impossible to visually
detect the message.

5.3 User feedback and reception

5.3.1 Usability Studies

I carried out three usability studies on successive versions of the extension. In each
case the user was asked to hide a message on a friends wall and receive a message I
posted on theirs.

User 1 was a non-technical student. They were presented with a version which
required them to chose an image whose dimensions are a multiple of 8. This proved
too difficult and the user became frustrated. The user also failed to rename the stego-
object something ending in .jpg when prompted so they were unable to reupload it
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to facebook. These issues were solved by using an HTML5 canvas to automatically
crop the cover and by a new Chrome feature which allows developers to prompt file
downloads to bear a certain name.

User 2 was a computer scientist. They remarked “hey, it’s pretty easy to use” and
successfully created a stego-object without any prompts. They then proceeded to
upload the cover image instead of the stego-object but realised when the message
wouldn’t decode. Although they blamed themselves I added a further reminder to
the instructions regarding this. They commented ”the decoder works great” and
successfully received the message posted on their wall.

User 3 was a non-technical student. They remarked the instructions were too long so
a ‘Quick start’ section was introduced. They successfully created a stego-object and
posted it on Facebook without prompts. They also successfully received a message,
remaking ‘it’s very easy’.

The usability is therefore determined to be suitable, especially considering the ap-
plication is mostly of interest to technical individuals.

6 Conclusion

A Chrome Extension has been presented enabling Facebook users to communicate
secretly and securely. This is the first publicly available steganographic system for
JPEGs which supports recompression as found on almost all popular websites.

Alternate codes for embedding (redraft? Shorten? Lengthen?)

I selected Modified Linear Block Codes for their stuck-bit-avoidance and error-
correction properties. An alternate option to avoid stuck bits would be to modify
Least Significant Bits in the same way as before such that 00 encodes a zero and
01, 10 or 11 encode a 1.

The only case where encoding fails is encoding a 1 where the two adjascent bits on
the stream are both stuck at 0. An error correction code would be nested within
this to correct for these errors. Assuming a stuck-bit rate p, error rate q and a

code word with even 0s and 1s this situation only occurs in p2

2 , giving a new error

rate q′ of p2+2q(q−1)p(1−p)+q2(1−p)2
2 + 2q(1−q)+q2

2 (I can justify this, not sure if it’s a
good use of space?). When plotted we see that if p < 0.2 then q′ < q and q′ grows
almost linearly to p so we can remove the stuck-bit rate on the channel in exchange
for halving sending rate and a linear increase in error rate in terms of the stuck-bit
rate.

Hence nesting a strong error correction code such as a Turbocode within this code
to reduce the stuck-bit rate could provide better results than obtained above using
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MLBCs and critically would increase capacity by allowing the use of other modes
with higher stuck-bit rates.

Reflecting on User Interface design

Given the nature of the application great consideration was given to the user in-
terface and interaction in order to allow maximum discression and security. Dur-
ing the course of building the application the user interface changed significantly
from being push-based with contact storate, polling and notifications to a discrete
hotkey-activated pull system where no past messages or data on the user’s contacts
are stored.

Initially I decided the system should be a Chrome Application with a launch icon on
the New Tab Page allowing the user to manage their contacts and stored passwords
as well as send new messages. The first version polled Facebook every minute and
scanned contacts new uploads for hidden messages, popping up a notification with
the message if one was found. I later deemed this undesirable since it would be easy
for somebody other than the user with access to the computer to quickly collect the
passwords and list of contacts.

I also decided that subtlety was likely to be a priority for users so this was added to
the problem specification and the application was designed around a hotkey-based
activation system where users press ctrl+alt+a while on Facebook to reveal the
user interface to send or receive messages without notifications or otherwise visible
UI.

These changes resulted in throwing away large amounts of code for polling Facebook
and persistent secure storage (non-trivial in only a web browser without a server
connection) so in the future I will spend more time deciding on user interfaces up
front to avoid wasting effort.

Reflecting on technology choice

Initially I selected Google’s Native Client technology for the JPEG and coefficient
modification functionality since it allows standard C libraries such as Libjpeg to be
used. I wrote embedding and extracting functions in C before recompiling them
using a toolchain provided by Google to allow the code to be run by Chrome se-
curely.

Code compiled to Native Client is severly limited and sandboxed to prevent malli-
cious attacks. This applies particularly to memory management and passing data
between the tab process and the Native Client process. These restrictions proved
insurmountable, with the task of passing a local JPEG into the specially compiled
Libjpeg library taking several days due to outdated documentation and lack of de-
bugging tools. For this reason I decided to move the entire project to Javascript
and rewrite the JPEG embedding and extraction procedures.
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Achieving capacity goals

The extension acheives a capacity of approximately 136 ASCII characters per 960-
by-720px image, almost reaching my goal of 140 characters. The fundamental limi-
tation on capacity when using Modified Linear BLock Codes is which modes of DCT
coefficients can be used. In this application only mode 1 (of 0–63) were used since
MLBCs can only deal with relatively low (realistically up to 20% stuck-bit rate)
and the higher frequency modes all incur much higher stuck-bit rates ranging from
∼45% for mode 2 to ∼98% for mode 63. Other codes would be required if these
modes are to be used for capacity in the future.

The requirement of using only a single mode results in high statistical detectabil-
ity since acheiving full capacity of 120 characters requires the utilisation of every
coefficient in the mode, changing on average 50% of them which causes significant
statistical (although not visible) change.

Achieving robustness

Write me after analysis is completed

Applications and Ethics

It would be irresponsible to release any new security tool without discussing its
applications and ethics, especially given the inherent dangers of an easy-to-use secret
communication channel.

Can steganography be used as a terrorist tool? The answer is an
unequivocal yes. The possibility for the abuse of steganography tech-
niques by terrorists is obvious. . . . Whether these techniques have been
used yet is still open to debate, but the opportunity for terrorists to add
steganography to their tool kit is undeniably at hand.

The extension built for this project is not deemed a large threat since the robustness
requirements meant we must make a very large number of changes to the image.
This was acceptable since undetectability was never a goal for the project. The
extension is therefore of interest to hobbyists and researchers to a far greater extent
than it is to terrorists.
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1 # Generate an MLBC in systematic form

2 newMLBC = (n, k, l) ->

3 debugOutput ("This is an ("+n+", "+k+", "+l+") code with sending

rate " + k/n)

4

5 r = n - k - l

6

7 if (2^r) > n

8 debugOutput (" Increase n or decrease k or decrease l. You can ’t

make H full rank with this .")

9 return {success: false}

10

11 correct = false

12 attempts = 0

13 # Keep trying to generate an MLBC until H rank == n

14 while !correct

15

16 # Generate random matrices here.

17 P = newRandomMatrix(k, r)

18 Q = newRandomMatrix(l, r)

19 R = newRandomMatrix(l, k)

20

21 # Generate H according to spec

22 Pt = transpose(P)

23 RP = multiplyMatrices(R, P)

24 QplusRPt = transpose (addMatrices(Q, RP))

25 Ir = identity(r)

26 H = horisontalJoin(horisontalJoin(Pt , QplusRPt), Ir)

27

28 correct = (columnRank(H) == n)

29

30 attempts ++

31 if count > 100000

32 debugOutput ("We tried 100000 matrices. Giving up.")

33 return {success: false}

34

35 # Generate G1 according to spec

36 Ik = identity(k)

37 zeroskl = newMatrix(k, l)

38 G1 = horisontalJoin(horisontalJoin(Ik, zeroskl),P)

39

40 # Generate G0 according to spec

41 Il = identity(l)

42 G0 = horisontalJoin(horisontalJoin(R, Il), Q)

43

44 # Generate J according to spec
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45 Ik = identity(k)

46 Rt = transpose(R)

47 zeroskr = newMatrix(k, r)

48 J = horisontalJoin(horisontalJoin(Ik , Rt), zeroskr)

49 debugOutput ("J:")

50 debugOutput(matrixString(J))

51

52 # Generate G by joining G0 , G1

53 G = verticalJoin(G0 , G1)

54

55 # Generate more useful things for later use

56 Ht = transpose(H)

57 Jt = transpose(J)

58

59 # Verify the checks work:

60 if !verifyMLBCCorrectness(G, G0, G1, Ht, Jt, n, k, l, r)

61 throw "MLBC is invalid"

62

63 return {k: k, n: n, l: l, r: r, G1: G1, Ht: Ht, Jt: Jt, G0: G0}

1 # Constraints is an array of objects like {elements: [0,1,2],

mustXorTo: 1}

2 solveMinimally = (variableCount , constraints) ->

3

4 # Takes a single constraint and an assignment and returns whether

the constraint is violated

5 satisfies = (constraint , assignment) ->

6 xor = 0

7 for element in constraint.elements

8 # If one of the variables hasn ’t been assigned

9 if assignment[element] == undefined

10 # Since it could be either 0 or 1 the constraint isn ’t

violated

11 return true

12 xor = (xor+assignment[element ])%2

13 return xor == constraint.mustXorTo

14

15 # assignment[i] represents the assignment to element i. Initially

undefined forall i

16 assignment = []

17 # We progress left to right while assigning. This is a list of

indices we can backtrack to and restart from there

18 validBacktracks = []

19 # These are loop counters for timeout

20 looped = 0

21 loopLimit = 10000000

22 # We explore the options in order of increasing hamming weight by

allowing up to maxOnes ones and incrementing this value

23 maxOnes = 1

24 # How many ones are currently in the assignment?

25 currentOnes = 0

26 # Which element are we currently assigning?
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27 current = 0

28

29 # While we haven ’t assigned every variable

30 while current < variableCount

31 looped ++

32 break if looped > loopLimit

33

34 debugOutput "Current: "+ current +" assignment: "+ assignment.

toString ()+" validBacktracks: "+ validBacktracks.toString ()+"

currentOnes: "+ currentOnes +" maxOnes: "+ maxOnes

35

36 # Always try 0 first

37 if assignment[current] == undefined

38 assignment[current] = 0

39 # This is backtrackable since we could change it to a 1

40 validBacktracks.push current

41 # We ’ve backtracked so try setting this to a 1

42 else if assignment[current] == 0

43 assignment[current] = 1

44 currentOnes ++

45 # assignment[current] == 1 will never happen since current would

not have been in validBacktracks

46

47 backtrack = false

48 # Check whether we ’ve violated any constraints and potentially

backtrack

49 for constraint in constraints

50 if !satisfies(constraint , assignment)

51 backtrack = true

52 break

53 # If we ’ve assigned more ones than allowed

54 if currentOnes > maxOnes

55 backtrack = true

56

57 if backtrack

58 debugOutput "We assigned "+ current +" to "+ assignment[current

]+" and it violated so backtrack to the last pos in ["+

validBacktracks.toString ()+"]"

59 if validBacktracks.length > 0

60 current = validBacktracks.pop()

61 # Decrement currentOnes for every 1 in assignment after

current

62 if current +1 <= variableCount -1

63 for i in [current +1.. variableCount -1]

64 if assignment[i] == 1

65 currentOnes --

66 # Reset assignments for variables with index > current

67 assignment.length = current + 1

68 else # No backtrack options , can we increase maxOnes?

69 if maxOnes < variableCount

70 debugOutput "Nowhere to backtrack to so increment

maxOnes and go back to the start"
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71 maxOnes ++

72 # Reset the whole assignment and restart

73 assignment.length = 0

74 current = 0

75 currentOnes = 0

76 else

77 debugOutput Nowhere to backtrack to and maxOnes is

already "+ variableCount +" so no assignment is valid

"

78 return {success: false}

79 else # If we didn ’t have to backtrack , simply continue!

80 debutOutput "We assigned "+ current +" to "+ assignment[current

]+" and didn ’t violate so continue ."

81 current ++ #We didn ’t have to backtrack and we’re not done ,

increment and loop!

82

83 # Since we ’re out of the loop either we assigned the last variable

and there was no conflict or we timed out

84

85 if looped > loopLimit

86 debugOutput "Gave up!"

87 return {success: false}

88 debugOutput "Loop finished because we assigned the last variable

and it didn ’t violate. We took "+ looped +" loops"

89 return assignment
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