
MalwareTech SBK
(Superpersistent Bootkit)
A Firmware Assisted Bootkit

Introduction

Coming up with the idea

 A few years ago, one of my friends was working on a piece of
malware which resided in the BIOS firmware. I thought this was a
cool idea, but was very impractical due to various constraints such
as the small size of the BIOS ROM and the fact it’s usually write
protected.

 I decided to look into writing firmware based malware to target
something more viable such as the GPU or Hard Disk, but after a few
days of research, I came to the conclusion that I didn’t have the
skills required to do either.

 In late 2013 I saw a post on spritesmods.com about hard disk
hacking using a JTAG, which inspired me to continue with my
research.

 In the end I decided to focus on hard disk firmware, because I
simply didn’t have the funds to buy a bunch of modern GPUs and
the potentially brick / short circuit them all.

Goals

 Find a way to modify the hard disk firmware without physical access

to the disk.

 Create malware that is capable of surviving a full system reinstall,

even if the entire disk is erased in the process.

 Come up with a way to conceal the infection and its components

from the infected system and forensic tools.

 Make the malware completely impossible to remove on a software

level, even from kernel mode or using a live CD.

What is firmware?

 Almost all electronic devices contain a small computer that is

specifically designed for said device (known as embedded

systems).

 Your computer is made up of embedded systems, such as the hard

disk and GPU.

 Firmware is the software used to control an embedded system, it’s

basically a tiny operating system.

 The firmware is generally stored in a small bit of flash memory on the

circuit board.

 A computer simply sends ATA requests on the SATA port, the hard
disk’s firmware is responsible for the actual processing of the request.

Why firmware?

 The firmware allows for total control of the infected device,

exceeding what’s possible with a kernel rootkit.

 Device firmware is almost never modified and is likely to outlast

many operating system upgrades and reinstalls.

 During forensic analysis most of the focus is towards what’s on the

disk, not what’s hiding inside it.

Hard Disk PCB

Marvell 88i ARM Microcontroller
• Multi-core 32-bit ARM CPU

• Around 1 MB internal RAM (used for data and code)

• 64 KB internal ROM (stores MCU / PCB specific start up code)

Samsung DDR400 SDRAM
• Used for DMA when reading/writing sectors and as the hard disk’s cache

• Accessible from firmware

• Seems to be 64 MB even if the cache is 8 MB (Some space can be used for code)

Generic EEPROM Chip
• Usually around 192 KB in size

• Contains firmware kernel and loader

• Readable and writable

Smooth L7251
• Controls spindle motor

• Not really useful for what I’m doing

The Setup

Requirements

 A way to dump the disk firmware so I could reverse engineer it.

 The ability to use the disk outside of my computer and avoid any
damage to its components if the disk short circuits.

 Something to let me debug the disk controller so I could test and

modify code.

 A method of hard-flashing the firmware, should I brick the drive.

 A debugger which supports debugging ARM code via GDB.

 Way too much free time.

Solution

 JTAG for debugging & reading / writing the disk controller’s memory.

 SPI programmer for dumping the firmware from the flash chip as well
as hard-flashing.

 ATA to USB adapter for using the disk out side of the computer.

 AC to 12v DC Molex power supply for powering the disk.

 OpenOCD for driving the JTAG.

 IDA Pro for graphical debugging via OpenOCD.

JTAG and SPI wires are soldered directly to the PCB

I’m using a TIAO USB multi-protocol adapter for JTAG / SPI

Research

Research

 Week 1: Googling for anything that would help during the

development phase, not much was found.

 Week 2 – 5: Finding my way around the hardware, Learning ARM

basics, looking for ways to read/write flash, and mapping out

memory.

 Week 5: Reversing the firmware load process.

 Week 6 - 8: Looking for the code responsible for handling disk

read/write requests and getting an idea of how it works.

 Week 8 - 10: Finding out at which point the sector read is completed
and where the sectors reside in the cache.

Setbacks

 Soldering wires to test points is much harder than it looks.

 Finding where in the cache sectors are read to took forever,

this was due to the fact the address is calculated as an offset

and uses several unknown variables.

 Before I was able to figure out how to hard-flash the firmware,

several disks were bricked by failed attempts at writing the

flash programmatically.

 Bits of the firmware are in read only memory which means

software breakpoints cannot be used.

 Only 1 hardware breakpoint unit, no step-over functionality,

and no watchpoints made debugging very time consuming.

Hard disk boot process

Hard disk boot process

 Bootstrap code is embedded into the microcontroller and is the only

part of the firmware which can’t be changed.

 The bootloader and kernel modules are verified by performing a

checksum-8

 All of the kernel modules are Lempel-Ziv compressed and encoded

using Huffman, I’ll call this LZ-H.

 Kernel modules are either data or code.

 Some kernel modules supply an entry point which is called by the

bootloader, others do not.

 The first kernel module is a standard ARM vector table, which is
loaded at address 0.

Flash format

Vendor specific commands

 The firmware implements a lot of custom commands which allows

vendor software running on the computer to interface with the

firmware.

 These commands are not documented and require a bit of reverse

engineering to find out.

 Can be intercepted just like normal ATA commands.

Service area

 An area of the disk which is reserved for firmware use, this is why a

disk will usually be a few GB smaller than its stated size.

 Stores various firmware data as well as overlay modules, which

provide the main functionality for the disk. This means that the flash

only has to store a small amount of code which can read the rest of

the firmware from the service area.

 Usually spans the first million or so sectors of the disk. In my case

sector 0 is actually sector 0x300000.

 Cannot be read using normal requests, only by the firmware directly

or via vendor specific commands.

Overlay modules

 Firmware modules that are stored in the service area of the hard

disk.

 Referred to as overlay modules because due to limited memory

capacity, the firmware will sometimes overwrite one overlay module

with another in order to perform a different task.

 The code responsible for processing SATA requests is in one of the

modules.

 Last parts of the firmware to be loaded.

Firmware flashing (Software)

 In order to make hard disk firmware easily updatable, vendors

implemented a way for the firmware to flash itself.

 Vendors write software that uses vendor specific commands to flash

the firmware from within the operating system.

 Reverse engineering vendor’s software reveals the commands

required to read/write the firmware.

 Vendor specific commands can be sent from user mode, as long as

the sender had admin rights (this includes firmware flashing

commands).

Firmware flashing (Hardware)

 Because software flashing requires the firmware to be functional,

disks need a way to be flashed if the firmware is bricked (known as

hard-flashing).

 Hard-flashing is performed by connecting an SPI programmer to the

hard disk and directly interfacing the flash chip.

 It does not take more than about 10 seconds to perform a hard-

flash and the disk does not need to be powered up.

 It would be possible to create a portable flasher to quickly infect

hard drives, given physical access.

In my case the connection point for the SPI programmer is a

cluster of 5 metal contact points on the bottom of the drive.

Firmware infection problems

 Most firmware based rootkits can simply flash the firmware with a

malicious version of the code and be done, but this isn’t my case.

 The code I needed to target resides in modules loaded from the

service area by the kernel. Although I could infect these modules,

they would be detectable by disk repair utilities.

 The kernel is compressed with an algorithm that I’ve tried to

replicate but failed miserably, so it can’t be modified.

Firmware Bootkit

Bootkits

 Most of life's problems can be solved with bootkits, this is no

exception.

 Firmware malware can adopt conventional bootkit techniques such

as interrupt hooking and bootloader patching.

 There is enough free space in the flash to store the entire bootkit as

well as the payload.

 On infection the firmware’s bootloader is relocated to the end of

the flash and replaced with a malicious bootloader (stage 1).

Infected flash format

Bootkit – Stage 1

 Begins executing at address 0x19000 which is where the original
bootloader should be.

 Relocates itself to address 0.

 Places stage 2 to an address which won’t be overwritten by the

kernel.

 Reads the original bootloader from flash and loads it at 0x19000.

 Patches the bootloader so stage 2 will be called right after the

kernel is loaded.

 Jumps to the original bootloader.

Bootkit – Stage 2

 Loads the firmware rootkit to some free memory which won’t be

overwritten by the overlay modules.

 Patches some kernel code which is executed

 Transfers execution back to the kernel.

Firmware Rootkit

Firmware rootkit

 The core of the malware.

 Capable of hooking kernel and overlay modules to intercept any
I/O to and from the hard disk or its firmware.

 Only a few KB in size but still extremely powerful.

 Can read and write the hard disk service area.

 Can’t be detected by the operating system or antiviruses.

 Written entirely in ARM Assembly.

Sector spoofing

 The primary purpose of the firmware rootkit is to allow spoofing of

disk sectors at firmware level.

 When the firmware receives a requests to read some sectors, it tells

the read/write head to read them into the cache, then notifies the

SATA port when the read is complete.

 The rootkit can overwrite sectors in the cache before they are sent

to the host computer.

 By modifying sectors that are read from the disk, it’s possible to run

code on the host.

 But which sector(s) should be modified?

MBR spoofing

 The MBR is always logical block address 0, making it the perfect target.

 Firmware rootkit can simply intercept the MBR read request and

replace it with a bootkit’s MBR.

 Using a second bootkit is great because:

 Saves the malware having to look for sectors that are part of an executable.

 No need to worry about the modified sector(s) being part of a digitally
signed executable.

 Allows privileged access to the operating system.

 Fairly easy to modify any bootkit to work with the firmware rootkit.

 If your bootkit doesn’t have a bootkit, you’re probably doing it wrong
anyway.

TinyXPB

 For those of you who are familiar with my previous work, you’ll

probably remember in 2014 I released TinyXPB, a simple Windows XP

bootkit.

 On my blog I mentioned that TinyXPB was merely a payload for a

much bigger project, this is the project I was referring to.

 I wanted to code something that would allow TinyXPB to survive an

operating system reinstall or disk reformat.

 The firmware rootkit can load TinyXPB by spoofing the MBR as well as

spoofing the first few sectors of the disk to contain TinyXPB’s

filesystem.

 The capabilities of the project are not limited to XP, but I decided to

just go with that because it’s quick and easy to install, and the entire

bootkit is small enough to fit inside the firmware.

http://www.malwaretech.com/2014/04/coding-malware-for-fun-and-not-for.html

Persistence

 The code is stored in the firmware and not on the disk platters,

meaning the malware can survive an operating system reinstall as

well as the entire disk being erased.

 Although the firmware can be re-flashed using vendor specific

commands, the firmware rootkit can intercept these and block

modifications attempts.

 The only way to disinfect the disk would be to buy a new PCB or

hard-flash the firmware using an SPI programmer (this is beyond

most normal users).

Stealth

 Sectors are only ever modified in the cache, leaving no trace of

modification.

 All of the malicious code resides in the firmware and not on the disk,

so the firmware rootkit would not show up during forensic analysis.

 The first time the MBR gets read is during boot, after this the firmware

can stop spoofing and let the real MBR be read, preventing

detection while the system is running.

 Firmware read attempts using vendor specific commands can also

be blocked, preventing any vendor utilities from dumping the

infected firmware.

Possible Features

Hidden Filesystem

 Hard disk’s service area usually has between 100 and 400 MB of free

space, which is much better than the 65 KB in the flash.

 The firmware rootkit could use this area to store large components

that exceed the size of the flash.

 Would also be possible to implement new vendor specific

commands, allowing code running inside the operating system to

access this area.

 Because the service area isn’t readable by normal ATA commands,

none of the data would show up during forensic analysis.

 Disk repair utilities can be blocked from accessing the hidden
filesystem using the normal vendor specific commands.

Firmware Spoofing

 Instead of blocking reading/writing of the firmware using vendor

specific commands, the rootkit could intercept them.

 Most hard disks store a backup copy of the firmware in the service

area, on read attempts the rootkit could return this instead of the

infected firmware.

 On write attempts the rootkit could infect new firmware on the fly,

allowing the disk to be updated whilst maintaining persistence.

Weaknesses

 It’s impossible to stop hard-flashing the firmware, because this is done
by directly interfacing the flash chip with an SPI programmer.

 If the disk was plugged into an already booted system, it would be
possible to observe the MBR being spoofed (though this may be
preventable using some kind of heuristics).

 The hard disk doesn’t lose power during a warm reboot; If the firmware
rootkit was set to stop spoofing the MBR after the first read, the MBR
bootkit would not be loaded upon restart.

 Secure boot defeats bootkits and thus defeats this; however, the
malware could simply fall back to file infection or similar.

 The malware is only designed for a single (albeit popular) make of hard
disk, as I don’t have the resources to write separate code for all the
major disk manufactures (this would be viable as most manufacturers
firmware doesn’t differ greatly between disk models).

Conclusion

This is usually the part where I’d post a proof of concept, but for obvious
reasons it wouldn’t be wise to do so. Instead you can just take this as an
example of what one person can do, as well as an insight into what a
state-backed agency with billions of dollar in funding could achieve, if one
of those existed.

I’ll probably upload a demo video of the malware surviving an operating
system reinstall, but first I need to fix a few bugs which causes it to not work
all the time. For now, here is a demonstration of how the MBR can be
spoofed from the firmware by modifying sectors in the cache:
https://www.youtube.com/watch?v=0gc-VF6bi3g

I hope you enjoyed reading, if you’d like to send feedback you can reach
me on admin@malwaretech.com

Twitter: @MalwareTechBlog

https://www.youtube.com/watch?v=0gc-VF6bi3g
mailto:admin@malwaretech.com
https://twitter.com/MalwareTechBlog

Related Resources

 https://spritesmods.com/?art=hddhack

 http://www.s3.eurecom.fr/docs/acsac13_zaddach.pdf

 http://forum.hddguru.com/viewtopic.php?t=20324

 http://www.malwaretech.com/2015/04/hard-disk-firmware-hacking-

part-1.html

 http://www.recover.co.il/SA-cover/SA-cover.pdf

 http://forum.hddguru.com/viewtopic.php?f=13&t=25552

 http://forum.hddguru.com/viewtopic.php?t=20346&f=1&start=320#

p183693

https://spritesmods.com/?art=hddhack
http://www.s3.eurecom.fr/docs/acsac13_zaddach.pdf
http://forum.hddguru.com/viewtopic.php?t=20324
http://www.malwaretech.com/2015/04/hard-disk-firmware-hacking-part-1.html
http://www.recover.co.il/SA-cover/SA-cover.pdf
http://forum.hddguru.com/viewtopic.php?f=13&t=25552
http://forum.hddguru.com/viewtopic.php?t=20346&f=1&start=320#p183693

